Sciact
  • EN
  • RU

n-Ary quasigroups of order 4 Full article

Journal SIAM Journal on Discrete Mathematics
ISSN: 0895-4801 , E-ISSN: 1095-7146
Output data Year: 2009, Volume: 23, Number: 2, Pages: 561-570 Pages count : 10 DOI: 10.1137/070697331
Tags Latin hypercube, n-ary quasigroup, reducibility
Authors Krotov D.S. 1 , Potapov V.N. 1
Affiliations
1 Sobolev Institute of Mathematics, prosp. Akademika Koptyuga, 4, Novosibirsk, 630090, Russia

Abstract: We characterize the set of all n-ary quasigroups of order 4: every n-ary quasigroup of order 4 is permutably reducible or semilinear. Permutable reducibility means that an n-ary quasigroup can be represented as a composition of k-ary and (n-k+1)-ary quasigroups for some k from 2 to n-1, where the order of arguments in the representation can differ from the original order. The set of semilinear n-ary quasigroups has a characterization in terms of Boolean functions.
Cite: Krotov D.S. , Potapov V.N.
n-Ary quasigroups of order 4
SIAM Journal on Discrete Mathematics. 2009. V.23. N2. P.561-570. DOI: 10.1137/070697331 WOS Scopus РИНЦ OpenAlex
Dates:
Submitted: Jul 16, 2007
Accepted: Oct 6, 2008
Published print: Feb 6, 2009
Identifiers:
Web of science: WOS:000267744700001
Scopus: 2-s2.0-73349093672
Elibrary: 15299459
OpenAlex: W3105130485
Citing:
DB Citing
Web of science 22
Scopus 27
Elibrary 34
OpenAlex 35
Altmetrics: