Killing Tensor Fields of Third Rank on a Two-Dimensional Riemannian Torus Научная публикация
Журнал |
Journal of Mathematics Research
ISSN: 1916-9795 , E-ISSN: 1916-9809 |
||
---|---|---|---|
Вых. Данные | Год: 2022, Том: 14, Номер: 1, Страницы: 1-29 Страниц : 29 DOI: 10.5539/jmr.v14n1p1 | ||
Ключевые слова | Killing tensor field, geodesic flow, integrable dynamical system | ||
Авторы |
|
||
Организации |
|
Информация о финансировании (1)
1 | Российский фонд фундаментальных исследований | 20-51-15004 |
Реферат:
A rank m symmetric tensor field on a Riemannian manifold is called a Killing field if the symmetric part of its covariant derivative is equal to zero. Such a field determines the first integral of the geodesic flow which is a degree m homogeneous polynomial in velocities. There exist global isothermal coordinates on a two-dimensional Riemannian torus such that the metric is of the form ds^2= λ(z)|dz|^2 in the coordinates. The torus admits a third rank Killing tensor field if and only if the function λ satisfies the equation R(∂/∂z(λ(c∆^-1λ_zz+a))= 0 with some complex constants a and c≠0. The latter equation is equivalent to some system of quadratic equations relating Fourier coefficients of the function λ. If the functions λ and λ + λ_0 satisfy the equation for a real constant λ0, 0, then there exists a non-zero Killing vector field on the torus.
Библиографическая ссылка:
Sharafutdinov V.A.
Killing Tensor Fields of Third Rank on a Two-Dimensional Riemannian Torus
Journal of Mathematics Research. 2022. V.14. N1. P.1-29. DOI: 10.5539/jmr.v14n1p1 РИНЦ OpenAlex
Killing Tensor Fields of Third Rank on a Two-Dimensional Riemannian Torus
Journal of Mathematics Research. 2022. V.14. N1. P.1-29. DOI: 10.5539/jmr.v14n1p1 РИНЦ OpenAlex
Даты:
Поступила в редакцию: | 23 окт. 2021 г. |
Опубликована online: | 22 дек. 2021 г. |
Идентификаторы БД:
РИНЦ: | 69424075 |
OpenAlex: | W3104318290 |
Цитирование в БД:
БД | Цитирований |
---|---|
OpenAlex | 1 |