Unique recovery of an unknown spatial load in damped beam equation from final time output Full article
Journal |
Inverse Problems
ISSN: 0266-5611 |
||||||||
---|---|---|---|---|---|---|---|---|---|
Output data | Year: 2021, Volume: 37, Number: 7, Pages: 37 07500 Pages count : 28 DOI: 10.1088/1361-6420/ ac01fb | ||||||||
Tags | damped Euler–Bernoulli and wave equations, inverse source problem, uniqueness, singular values | ||||||||
Authors |
|
||||||||
Affiliations |
|
Abstract:
in the damped Euler–Bernoulli beam equation ρ(x)utt + μut + (r(x)uxx)xx =
F(x)G(t) from final time measured output (displacement, uT (x) :=u(x, T) or
velocity, νt,T (x) :=ut(x, T)). It is shown in [Hasanov Hasanoglu and Romanov
2017 Introduction to Inverse Problems for Differential Equations (New York:
Springer)] that the unique determination of F(x) in the undampedwave equation
utt − (k(x)ux)x = F(x)G(t) from final time output is not possible. This result is
also valid for the undamped beam equation ρ(x)utt + (r(x)uxx)xx = F(x)G(t).
We prove that in the presence of damping term μut, the spatial load can be
uniquely determined by the final time output, in terms of the convergent singular
value expansion (SVE)under some acceptable conditions with respect to the final time T > 0, the damping coefficient μ > 0 and the temporal load G(t) > 0.
Cite:
Hasanov A.
, Romanov V.
, Baysal O.
Unique recovery of an unknown spatial load in damped beam equation from final time output
Inverse Problems. 2021. V.37. N7. P.37 07500. DOI: 10.1088/1361-6420/ ac01fb
Unique recovery of an unknown spatial load in damped beam equation from final time output
Inverse Problems. 2021. V.37. N7. P.37 07500. DOI: 10.1088/1361-6420/ ac01fb
Dates:
Submitted: | Mar 24, 2021 |
Accepted: | May 12, 2021 |
Identifiers:
No identifiers
Citing:
Пока нет цитирований