Sciact
  • EN
  • RU

Unique recovery of an unknown spatial load in damped beam equation from final time output Научная публикация

Журнал Inverse Problems
ISSN: 0266-5611
Вых. Данные Год: 2021, Том: 37, Номер: 7, Страницы: 37 07500 Страниц : 28 DOI: 10.1088/1361-6420/ ac01fb
Ключевые слова damped Euler–Bernoulli and wave equations, inverse source problem, uniqueness, singular values
Авторы Hasanov Alemdar 1 , Romanov Vladimir 2,3 , Baysal Onur 4
Организации
1 Kocaeli University
2 Sobolev Institute of Mathematics
3 Mathematical Center in Akademgorodok
4 Istanbul Kultur University

Реферат: in the damped Euler–Bernoulli beam equation ρ(x)utt + μut + (r(x)uxx)xx = F(x)G(t) from final time measured output (displacement, uT (x) :=u(x, T) or velocity, νt,T (x) :=ut(x, T)). It is shown in [Hasanov Hasanoglu and Romanov 2017 Introduction to Inverse Problems for Differential Equations (New York: Springer)] that the unique determination of F(x) in the undampedwave equation utt − (k(x)ux)x = F(x)G(t) from final time output is not possible. This result is also valid for the undamped beam equation ρ(x)utt + (r(x)uxx)xx = F(x)G(t). We prove that in the presence of damping term μut, the spatial load can be uniquely determined by the final time output, in terms of the convergent singular value expansion (SVE)under some acceptable conditions with respect to the final time T > 0, the damping coefficient μ > 0 and the temporal load G(t) > 0.
Библиографическая ссылка: Hasanov A. , Romanov V. , Baysal O.
Unique recovery of an unknown spatial load in damped beam equation from final time output
Inverse Problems. 2021. V.37. N7. P.37 07500. DOI: 10.1088/1361-6420/ ac01fb
Даты:
Поступила в редакцию: 24 мар. 2021 г.
Принята к публикации: 12 мая 2021 г.
Идентификаторы БД: Нет идентификаторов
Цитирование в БД: Пока нет цитирований
Альметрики: