Sciact
  • EN
  • RU

On pseudofrobenius imprimitive association schemes Научная публикация

Журнал Journal of Algebraic Combinatorics
ISSN: 0925-9899 , E-ISSN: 1572-9192
Вых. Данные Год: 2023, Том: 57, Номер: 2, Страницы: 385-402 Страниц : 18 DOI: 10.1007/s10801-022-01193-4
Ключевые слова frobenius groups, permutation groups, association schemes, 05e30, 20b05, 05c60, 20c15, combinatorics, convex and discrete geometry, order, lattices, ordered algebraic structures, computer science, general, group theory and generalizations
Авторы Ponomarenko Ilia 1 , Ryabov Grigory 1,2,3,4
Организации
1 St. Petersburg Department of V.A. Steklov Institute of Mathematics
2 Sobolev Institute of Mathematics
3 Novosibirsk State Technical University
4 Leonard Euler International Mathematical Institute

Информация о финансировании (1)

1 Министерство науки и высшего образования РФ 075-15-2019-1620

Реферат: An (association) scheme is said to be Frobenius if it is the (orbital) scheme of a Frobenius group. A scheme which has the same tensor of intersection numbers as some Frobenius scheme is said to be pseudofrobenius. We establish a necessary and sufficient condition for an imprimitive pseudofrobenius scheme to be Frobenius. We also prove strong necessary conditions for existence of an imprimitive pseudofrobenius scheme which is not Frobenius. As a byproduct, we obtain a sufficient condition for an imprimitive Frobenius group G with abelian kernel to be determined up to isomorphism only by the character table of G. Finally, we prove that the Weisfeiler-Leman dimension of a circulant graph with n vertices and Frobenius automorphism group is equal to 2 unless n∈{p,p2,p3,pq,p2q} , where p and q are distinct primes.
Библиографическая ссылка: Ponomarenko I. , Ryabov G.
On pseudofrobenius imprimitive association schemes
Journal of Algebraic Combinatorics. 2023. V.57. N2. P.385-402. DOI: 10.1007/s10801-022-01193-4 WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: 6 нояб. 2021 г.
Принята к публикации: 19 нояб. 2022 г.
Опубликована online: 29 дек. 2022 г.
Опубликована в печати: 31 янв. 2024 г.
Идентификаторы БД:
Web of science: WOS:000906936800001
Scopus: 2-s2.0-85145202547
РИНЦ: 59894317
OpenAlex: W3208797046
Цитирование в БД:
БД Цитирований
Web of science 1
Scopus 1
OpenAlex 2
РИНЦ 1
Альметрики: