Sciact
  • EN
  • RU

Неполиномиальные интегралы многомерных геодезических потоков и алгебры Ли Full article

Journal Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304
Output data Year: 2022, Volume: 19, Number: 2, Pages: 1088-1093 Pages count : 6 DOI: 10.33048/semi.2022.19.087
Tags Riemannian metric, geodesic flow, non-polynomial first integral, lie algebra, Casimir invarian
Authors Агапов С.В. 1
Affiliations
1 Институт математики им. С.Л. Соболева СО РАН (Новосибирск)

Funding (1)

1 Russian Science Foundation 21-41-00018

Abstract: In this paper, we construct explicit local examples of multidimensional Riemannian metrics whose geodesic flows have non-polynomial first integrals and are completely integrable. We rely on a construction described in a recent paper by A.V. Galajinsky which allows one to construct such examples via the Casimir invariants of finite-dimensional Lie algebras.
Cite: Агапов С.В.
Неполиномиальные интегралы многомерных геодезических потоков и алгебры Ли
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2022. Т.19. №2. С.1088-1093. DOI: 10.33048/semi.2022.19.087 WOS РИНЦ
Dates:
Submitted: Nov 4, 2022
Accepted: Dec 29, 2022
Published online: Dec 29, 2022
Published print: Mar 7, 2023
Identifiers:
Web of science: WOS:000959099400013
Elibrary: 50336873
Citing:
DB Citing
Web of science 2
Elibrary 1
Altmetrics: