Sciact
  • EN
  • RU

About coincidence points theorems on 2-step Carnot groups with 1-dimensional centre equipped with Box-quasimetrics Full article

Journal AIMS Mathematics
, E-ISSN: 2473-6988
Output data Year: 2023, Volume: 8, Number: 3, Pages: 6191-6205 Pages count : 15 DOI: 10.3934/math.2023313
Tags (q1 q2)-quasimetric spase; Carnot group; exact value; Box-quasimetric; coincidence points; estimates of divergence
Authors Greshnov Alexander 1 , Potapov Vladimir 1
Affiliations
1 Sobolev Institute of Mathematics

Funding (2)

1 Sobolev Institute of Mathematics FWNF-2022-0017
2 Sobolev Institute of Mathematics FWNF-2022-0006

Abstract: For some class of 2-step Carnot groups Dn with 1-dimensional centre we find the exact values of the constants in (1, q2)-generalized triangle inequality for their Box-quasimetrics ρBoxDn. Using this result we get the best version of the Coincidence Points Theorem of α-covering and β-Lipschitz mappings defined on (Dn, ρBoxDn)
Cite: Greshnov A. , Potapov V.
About coincidence points theorems on 2-step Carnot groups with 1-dimensional centre equipped with Box-quasimetrics
AIMS Mathematics. 2023. V.8. N3. P.6191-6205. DOI: 10.3934/math.2023313 WOS Scopus РИНЦ OpenAlex
Dates:
Submitted: Oct 30, 2022
Accepted: Dec 21, 2022
Published online: Jan 3, 2023
Published print: Mar 3, 2023
Identifiers:
Web of science: WOS:000909557600002
Scopus: 2-s2.0-85146128259
Elibrary: 60290956
OpenAlex: W4313517717
Citing:
DB Citing
Scopus 5
Web of science 4
OpenAlex 6
Altmetrics: