About coincidence points theorems on 2-step Carnot groups with 1-dimensional centre equipped with Box-quasimetrics Full article
Journal |
AIMS Mathematics
, E-ISSN: 2473-6988 |
||
---|---|---|---|
Output data | Year: 2023, Volume: 8, Number: 3, Pages: 6191-6205 Pages count : 15 DOI: 10.3934/math.2023313 | ||
Tags | (q1 q2)-quasimetric spase; Carnot group; exact value; Box-quasimetric; coincidence points; estimates of divergence | ||
Authors |
|
||
Affiliations |
|
Funding (2)
1 | Sobolev Institute of Mathematics | FWNF-2022-0017 |
2 | Sobolev Institute of Mathematics | FWNF-2022-0006 |
Abstract:
For some class of 2-step Carnot groups Dn with 1-dimensional centre we find the exact values of the constants in (1, q2)-generalized triangle inequality for their Box-quasimetrics ρBoxDn. Using this result we get the best version of the Coincidence Points Theorem of α-covering and β-Lipschitz mappings defined on (Dn, ρBoxDn)
Cite:
Greshnov A.
, Potapov V.
About coincidence points theorems on 2-step Carnot groups with 1-dimensional centre equipped with Box-quasimetrics
AIMS Mathematics. 2023. V.8. N3. P.6191-6205. DOI: 10.3934/math.2023313 WOS Scopus РИНЦ OpenAlex
About coincidence points theorems on 2-step Carnot groups with 1-dimensional centre equipped with Box-quasimetrics
AIMS Mathematics. 2023. V.8. N3. P.6191-6205. DOI: 10.3934/math.2023313 WOS Scopus РИНЦ OpenAlex
Dates:
Submitted: | Oct 30, 2022 |
Accepted: | Dec 21, 2022 |
Published online: | Jan 3, 2023 |
Published print: | Mar 3, 2023 |
Identifiers:
Web of science: | WOS:000909557600002 |
Scopus: | 2-s2.0-85146128259 |
Elibrary: | 60290956 |
OpenAlex: | W4313517717 |