Sciact
  • EN
  • RU

4/3 OPT+2/3 Approximation for Big Two-Bar Charts Packing Problem Научная публикация

Журнал Journal of Mathematical Sciences (United States)
ISSN: 1072-3374 , E-ISSN: 1573-8795
Вых. Данные Год: 2023, Том: 269, Номер: 6, Страницы: 813-822 Страниц : 11 DOI: 10.1007/s10958-023-06319-y
Авторы Erzin A.I. 1 , Kononov A.V. 1 , Melidi G.E. 2 , Nazarenko S.A. 3
Организации
1 Sobolev Institute of Mathematics SB RAS
2 Sorbonne University
3 Novosibirsk State University

Информация о финансировании (1)

1 Институт математики им. С.Л. Соболева СО РАН FWNF-2022-0019

Реферат: We consider the two-bar charts packing problem generalizing the strongly NP-hard bin packing problem. We prove that the problem remains strongly NP-hard even if each two-bar chart has at least one bar higher than 1/2. If the first (or second) bar of each two-bar chart is higher than 1/2, we show that the O(n2)-time greedy algorithm with lexicographic ordering of two-bar charts constructs a packing of length at most OPT+1, where OPT is optimum, and present an O(n2.5)-time algorithm that constructs a packing of length at most 4/3 · OPT+2/3 in the NP-hard case where each two-bar chart has at least one bar higher than 1/2.
Библиографическая ссылка: Erzin A.I. , Kononov A.V. , Melidi G.E. , Nazarenko S.A.
4/3 OPT+2/3 Approximation for Big Two-Bar Charts Packing Problem
Journal of Mathematical Sciences (United States). 2023. V.269. N6. P.813-822. DOI: 10.1007/s10958-023-06319-y Scopus РИНЦ OpenAlex
Даты:
Принята к публикации: 11 нояб. 2022 г.
Опубликована online: 7 февр. 2023 г.
Опубликована в печати: 3 мар. 2023 г.
Идентификаторы БД:
Scopus: 2-s2.0-85149262492
РИНЦ: 60865390
OpenAlex: W4323045613
Цитирование в БД:
БД Цитирований
Scopus 1
OpenAlex 1
Альметрики: