Sciact
  • EN
  • RU

Uniform convergence on subspaces in von Neumann's ergodic theorem with continuous time Full article

Journal Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304
Output data Year: 2023, Volume: 20, Number: 1, Pages: 183-206 Pages count : 24 DOI: 10.33048/semi.2023.20.016
Tags von Neumann's ergodic theorem; rates of convergence in ergodic theorems; power-law uniform convergence
Authors Kachurovskii A.G. 1 , Podvigin I.V. 1 , Todikov V.E. 1,2
Affiliations
1 Sobolev Institute of Mathematics
2 Novosibirsk State Technical University

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0004

Abstract: Power-law uniform (in the operator norm) convergence on vector subspaces with their own norms in von Neumann's ergodic theorem with continuous time is considered. All possible exponents of the considered power-law convergence are found; for each of these exponents, spectral criteria for such convergence are given and a complete description of all such subspaces is obtained. Uniform convergence over the entire space takes place only in trivial cases, which explains the interest in the uniform convergence just on subspaces. In addition, along the way, the old convergence rate estimates in the von Neumann ergodic theorem for (semi) ows are generalized and refined.
Cite: Kachurovskii A.G. , Podvigin I.V. , Todikov V.E.
Uniform convergence on subspaces in von Neumann's ergodic theorem with continuous time
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2023. V.20. N1. P.183-206. DOI: 10.33048/semi.2023.20.016 WOS Scopus РИНЦ MathNet
Dates:
Submitted: Jul 3, 2022
Published print: Mar 1, 2023
Published online: Mar 1, 2023
Identifiers:
Web of science: WOS:000959070400010
Scopus: 2-s2.0-85150798440
Elibrary: 54768288
MathNet: semr1580
Citing:
DB Citing
Scopus 5
Web of science 4
Elibrary 5
Altmetrics: