Uniform convergence on subspaces in von Neumann's ergodic theorem with continuous time Научная публикация
Журнал |
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304 |
||||
---|---|---|---|---|---|
Вых. Данные | Год: 2023, Том: 20, Номер: 1, Страницы: 183-206 Страниц : 24 DOI: 10.33048/semi.2023.20.016 | ||||
Ключевые слова | von Neumann's ergodic theorem; rates of convergence in ergodic theorems; power-law uniform convergence | ||||
Авторы |
|
||||
Организации |
|
Информация о финансировании (1)
1 | Институт математики им. С.Л. Соболева СО РАН | FWNF-2022-0004 |
Реферат:
Power-law uniform (in the operator norm) convergence on vector subspaces with their own norms in von Neumann's ergodic theorem with continuous time is considered. All possible exponents of the considered power-law convergence are found; for each of these exponents, spectral criteria for such convergence are given and a complete description of all such subspaces is obtained. Uniform convergence over the entire space takes place only in trivial cases, which explains the interest in the uniform convergence just on subspaces. In addition, along the way, the old convergence rate estimates in the von Neumann ergodic theorem for (semi) ows are generalized and refined.
Библиографическая ссылка:
Kachurovskii A.G.
, Podvigin I.V.
, Todikov V.E.
Uniform convergence on subspaces in von Neumann's ergodic theorem with continuous time
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2023. V.20. N1. P.183-206. DOI: 10.33048/semi.2023.20.016 WOS Scopus РИНЦ MathNet
Uniform convergence on subspaces in von Neumann's ergodic theorem with continuous time
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2023. V.20. N1. P.183-206. DOI: 10.33048/semi.2023.20.016 WOS Scopus РИНЦ MathNet
Даты:
Поступила в редакцию: | 3 июл. 2022 г. |
Опубликована в печати: | 1 мар. 2023 г. |
Опубликована online: | 1 мар. 2023 г. |
Идентификаторы БД:
Web of science: | WOS:000959070400010 |
Scopus: | 2-s2.0-85150798440 |
РИНЦ: | 54768288 |
MathNet: | semr1580 |