Sciact
  • EN
  • RU

Integrable magnetic geodesic flows on 2-surfaces Full article

Journal Nonlinearity
ISSN: 0951-7715 , E-ISSN: 1361-6544
Output data Year: 2023, Volume: 36, Number: 4, Pages: 2128-2147 Pages count : 20 DOI: 10.1088/1361-6544/acc0c5
Tags magnetic geodesic flow, first integral, semi-Hamiltonian system, generalized hodograph method, Riemann invariants, Legendre transformation, hypergeometric functions
Authors Agapov Sergei 1,2 , Potashnikov Alexey 2 , Shubin Vladislav 2
Affiliations
1 Novosibirsk State University
2 Sobolev Institute of Mathematics SB RAS

Funding (1)

1 Mathematical Center in Akademgorodok 075-15-2019-1675

Abstract: We study the magnetic geodesic flows on 2-surfaces having an additional first integral which is independent of the Hamiltonian at a fixed energy level. The following two cases are considered: when there exists a quadratic in momenta integral, and also the case of a rational in momenta integral with a linear numerator and denominator. In both cases certain semi-Hamiltonian systems of partial differential equations (PDEs) appear. In this paper we construct exact solutions (generally speaking, local ones) to these systems: in the first case via the generalized hodograph method,inthesecondcaseviatheLegendre transformation and the method of separation of variables.
Cite: Agapov S. , Potashnikov A. , Shubin V.
Integrable magnetic geodesic flows on 2-surfaces
Nonlinearity. 2023. V.36. N4. P.2128-2147. DOI: 10.1088/1361-6544/acc0c5 WOS Scopus РИНЦ OpenAlex
Dates:
Submitted: Jun 12, 2022
Accepted: Mar 2, 2023
Published print: Mar 15, 2023
Published online: Mar 15, 2023
Identifiers:
Web of science: WOS:000948982900001
Scopus: 2-s2.0-85150530616
Elibrary: 61660007
OpenAlex: W4324382272
Citing:
DB Citing
Web of science 1
Scopus 1
OpenAlex 1
Altmetrics: