Integrable magnetic geodesic flows on 2-surfaces Научная публикация
Журнал |
Nonlinearity
ISSN: 0951-7715 , E-ISSN: 1361-6544 |
||||
---|---|---|---|---|---|
Вых. Данные | Год: 2023, Том: 36, Номер: 4, Страницы: 2128-2147 Страниц : 20 DOI: 10.1088/1361-6544/acc0c5 | ||||
Ключевые слова | magnetic geodesic flow, first integral, semi-Hamiltonian system, generalized hodograph method, Riemann invariants, Legendre transformation, hypergeometric functions | ||||
Авторы |
|
||||
Организации |
|
Информация о финансировании (1)
1 | Математический центр в Академгородке | 075-15-2019-1675 |
Реферат:
We study the magnetic geodesic flows on 2-surfaces having an additional first integral which is independent of the Hamiltonian at a fixed energy level. The following two cases are considered: when there exists a quadratic in momenta integral, and also the case of a rational in momenta integral with a linear numerator and denominator. In both cases certain semi-Hamiltonian systems of partial differential equations (PDEs) appear. In this paper we construct exact solutions (generally speaking, local ones) to these systems: in the first case via the generalized hodograph method,inthesecondcaseviatheLegendre transformation and the method of separation of variables.
Библиографическая ссылка:
Agapov S.
, Potashnikov A.
, Shubin V.
Integrable magnetic geodesic flows on 2-surfaces
Nonlinearity. 2023. V.36. N4. P.2128-2147. DOI: 10.1088/1361-6544/acc0c5 WOS Scopus РИНЦ OpenAlex
Integrable magnetic geodesic flows on 2-surfaces
Nonlinearity. 2023. V.36. N4. P.2128-2147. DOI: 10.1088/1361-6544/acc0c5 WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: | 12 июн. 2022 г. |
Принята к публикации: | 2 мар. 2023 г. |
Опубликована в печати: | 15 мар. 2023 г. |
Опубликована online: | 15 мар. 2023 г. |
Идентификаторы БД:
Web of science: | WOS:000948982900001 |
Scopus: | 2-s2.0-85150530616 |
РИНЦ: | 61660007 |
OpenAlex: | W4324382272 |