Sciact
  • EN
  • RU

On the model of random walk with multiple memory structure Научная публикация

Журнал Physica A: Statistical Mechanics and its Applications
ISSN: 0378-4371
Вых. Данные Год: 2022, Том: 603, Страницы: 127795 Страниц : 1 DOI: 10.1016/j.physa.2022.127795
Ключевые слова Memory systems, Anomalous diffusion, Limit theorems, Fractional Brownian motion
Авторы Arkashov N.S. 1
Организации
1 Novosibirsk State Technical University, Karl Marx Ave., 20, Novosibirsk 630073, Russia

Реферат: A model of one-dimensional random walk based on the memory flow phenomenology is constructed. In this model, the jumps of the random walk process have a convolution structure formed on the basis of a finite sequence of memory functions and a stationary, generally speaking, non-Gaussian sequence. A physical interpretation of memory functions and the stationary sequence is given. A limit theorem in the metric space D[0, 1] for the normalized walk process is obtained.
Библиографическая ссылка: Arkashov N.S.
On the model of random walk with multiple memory structure
Physica A: Statistical Mechanics and its Applications. 2022. V.603. P.127795. DOI: 10.1016/j.physa.2022.127795 WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: 31 дек. 2021 г.
Идентификаторы БД:
Web of science: WOS:000864174500011
Scopus: 2-s2.0-85133479293
РИНЦ: 49152246
OpenAlex: W4283316398
Цитирование в БД:
БД Цитирований
Web of science 4
Scopus 5
OpenAlex 7
Альметрики: