Sciact
  • EN
  • RU

Modifications of Karlin and Simon text models Научная публикация

Журнал Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304
Вых. Данные Год: 2022, Том: 19, Номер: 2, Страницы: 708-723 Страниц : 16 DOI: 10.33048/semi.2022.19.059
Ключевые слова probability text models, Simon model, infinite urn model, weak convergence.
Авторы Chebunin M.G. 1,2 , Kovalevskii A.P. 2,3
Организации
1 Karlsruhe Institute of Technology, Karlsruhe, Germany
2 Novosibirsk State University, Novosibirsk, Russia
3 Novosibirsk State Technical University, Novosibirsk, Russia

Информация о финансировании (1)

1 Российский фонд фундаментальных исследований 19-51-15001

Реферат: We discuss probability text models and their modifications. We construct processes of different and unique words in a text. The models are to correspond to the real text statistics. The infinite urn model (Karlin model) and the Simon model are the most known models of texts, but they do not give the ability to simulate the number of unique words correctly. The infinite urn model give sometimes the incorrect limit of the relative number of unique and different words. The Simon model states a linear growth of the numbers of different and unique words. We propose three modifications of the Karlin and Simon models. The first one is the offline variant, the Simon model starts after the completion of the infinite urn scheme. We prove limit theorems for this modification in embedded times only. The second modification involves repeated words in the Karlin model. We prove limit theorems for it. The third modification is the online variant, the Simon redistribution works at any toss of the Karlin model. In contrast to the compound Poisson model, we have no analytics for this modification. We test all the modifications by the simulation and have a good correspondence to the real texts
Библиографическая ссылка: Chebunin M.G. , Kovalevskii A.P.
Modifications of Karlin and Simon text models
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2022. V.19. N2. P.708-723. DOI: 10.33048/semi.2022.19.059 WOS Scopus РИНЦ
Даты:
Поступила в редакцию: 26 дек. 2021 г.
Опубликована online: 7 сент. 2022 г.
Опубликована в печати: 7 мар. 2023 г.
Идентификаторы БД:
Web of science: WOS:000886649600025
Scopus: 2-s2.0-85145993030
РИНЦ: 50336845
Цитирование в БД:
БД Цитирований
Scopus 1
Web of science 1
Альметрики: