A new 4-chromatic edge critical Koester graph Научная публикация
Журнал |
Discrete Mathematics Letters
ISSN: 2664-2557 |
||
---|---|---|---|
Вых. Данные | Год: 2023, Том: 12, Страницы: 6-10 Страниц : 5 DOI: 10.47443/dml.2022.166 | ||
Ключевые слова | plane graph; 4-critical graph; Gro¨tzsch–Sachs graph; Koester graph | ||
Авторы |
|
||
Организации |
|
Информация о финансировании (1)
1 | Институт математики им. С.Л. Соболева СО РАН | FWNF-2022-0017 |
Реферат:
Let S be a decomposition of a simple 4-regular plane graph into edge-disjoint cycles such that every two adjacent edges on a face belong to different cycles of S. Such graphs, called Gr¨ otzsch–Sachs graphs, may be considered as a result of a superposition of simple closed curves in the plane with tangencies disallowed. Koester studied the coloring of Gr¨otzschSachs graphs when all curves are circles. In 1984, he presented the first example of a 4-chromatic edge critical plane graph of order 40 formed by 7 circles. In the present paper, a new 4-chromatic edge critical graph generated by circles in the plane is presented.
Библиографическая ссылка:
Dobrynin A.A.
A new 4-chromatic edge critical Koester graph
Discrete Mathematics Letters. 2023. V.12. P.6-10. DOI: 10.47443/dml.2022.166 WOS Scopus OpenAlex
A new 4-chromatic edge critical Koester graph
Discrete Mathematics Letters. 2023. V.12. P.6-10. DOI: 10.47443/dml.2022.166 WOS Scopus OpenAlex
Даты:
Поступила в редакцию: | 25 янв. 2023 г. |
Принята к публикации: | 13 февр. 2023 г. |
Опубликована в печати: | 7 мар. 2023 г. |
Опубликована online: | 7 мар. 2023 г. |
Идентификаторы БД:
Web of science: | WOS:001065538700002 |
Scopus: | 2-s2.0-85176583730 |
OpenAlex: | W4323352235 |