Sciact
  • EN
  • RU

On simple left-symmetric algebras Научная публикация

Журнал Journal of Algebra
ISSN: 0021-8693 , E-ISSN: 1090-266X
Вых. Данные Год: 2023, Том: 621, Страницы: 58-86 Страниц : 29 DOI: 10.1016/j.jalgebra.2023.01.009
Ключевые слова Left-symmetric algebra; Lie-solvable algebra; Nilpotent algebra; Novikov algebra;Pre-Lie algebra; Simple algebra
Авторы Pozhidaev A. 1 , Umirbaev U. 2,3,4 , Zhelyabin V. 1
Организации
1 Sobolev Institute of Mathematics of SB RAS, Novosibirsk, Russian Federation
2 Wayne State University, Detroit, MI, United States
3 Al-Farabi Kazakh National University, Almaty, Kazakhstan
4 Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan

Информация о финансировании (1)

1 Российский научный фонд 21-11-00286

Реферат: We prove that the multiplication algebra M(A) of any simple finite-dimensional left-symmetric nonassociative algebra A over a field of characteristic zero coincides with the right multiplication algebra R(A). In particular, A does not contain any proper right ideal. These results immediately give a description of simple finite-dimensional Novikov algebras over an algebraically closed field of characteristic zero [29]. The structure of finite-dimensional simple left-symmetric nonassociative algebras from a very narrow class A of algebras with the identities [[x,y],[z,t]]=[x,y]([z,t]u)=0 is studied in detail. We prove that every such algebra A admits a Z2-grading A=A0⊕A1 with an associative and commutative A0. Simple algebras are described in the following cases: (1) A is four dimensional over an algebraically closed field of characteristic not 2, (2) A0 is an algebra with the zero product, and (3) A0 is simple; in the last two cases, the description is given in terms of root systems. A necessary and sufficient condition for A to be complete is given
Библиографическая ссылка: Pozhidaev A. , Umirbaev U. , Zhelyabin V.
On simple left-symmetric algebras
Journal of Algebra. 2023. V.621. P.58-86. DOI: 10.1016/j.jalgebra.2023.01.009 WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: 30 авг. 2022 г.
Опубликована online: 24 янв. 2023 г.
Опубликована в печати: 9 февр. 2023 г.
Идентификаторы БД:
Web of science: WOS:000944733300001
Scopus: 2-s2.0-85147577840
РИНЦ: 60461665
OpenAlex: W4317929715
Цитирование в БД:
БД Цитирований
Web of science 2
OpenAlex 3
РИНЦ 5
Scopus 3
Альметрики: