Sciact
  • EN
  • RU

An enumeration of 1-perfect ternary codes Full article

Journal Discrete Mathematics
ISSN: 0012-365X , E-ISSN: 1872-681X
Output data Year: 2023, Volume: 346, Number: 7, Article number : 113437, Pages count : 16 DOI: 10.1016/j.disc.2023.113437
Tags Perfect codes, Ternary codes, Concatenation, Switching
Authors Shi M. 1,2 , Krotov D.S. 3
Affiliations
1 Key Laboratory of Intelligent Computing and Signal Processing, Ministry of Education, School of Mathematical Sciences, Anhui University, Hefei, Anhui, China
2 State Key Laboratory of Integrated Service Networks, Xidian University, Xi'an, 710071, China
3 Sobolev Institute of Mathematics, Novosibirsk 630090, Russia

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0017

Abstract: We study codes with parameters of the ternary Hamming (n=(3^m-1)/2, 3^{n-m}, 3) code, i.e., ternary 1-perfect codes. The rank of the code is defined to be the dimension of its affine span. We characterize ternary 1-perfect codes of rank n-m+1, count their number, and prove that all such codes can be obtained from each other by a sequence of two-coordinate switchings. We enumerate ternary 1-perfect codes of length 13 obtained by concatenation from codes of lengths 9 and 4; we find that there are 93241327 equivalence classes of such codes.
Cite: Shi M. , Krotov D.S.
An enumeration of 1-perfect ternary codes
Discrete Mathematics. 2023. V.346. N7. 113437 :1-16. DOI: 10.1016/j.disc.2023.113437 WOS Scopus РИНЦ OpenAlex
Dates:
Submitted: Jul 15, 2022
Accepted: Mar 22, 2023
Published print: Apr 4, 2023
Published online: Apr 4, 2023
Identifiers:
Web of science: WOS:000978319500001
Scopus: 2-s2.0-85151510745
Elibrary: 61981255
OpenAlex: W4362635821
Citing:
DB Citing
Scopus 3
Web of science 3
OpenAlex 4
Elibrary 3
Altmetrics: