Finite index subgroups in non-large generalized Baumslag–Solitar groups Full article
Journal |
Communications in Algebra
ISSN: 0092-7872 , E-ISSN: 1532-4125 |
||
---|---|---|---|
Output data | Year: 2021, Volume: 49, Number: 9, Pages: 3736-3742 Pages count : 7 DOI: 10.1080/00927872.2021.1904969 | ||
Tags | finite index subgroup, Baumslag–Solitar group, generalized Baumslag–Solitar group, non-large group | ||
Authors |
|
||
Affiliations |
|
Funding (1)
1 | Russian Science Foundation | 19-11-00039 |
Abstract:
A generalized Baumslag–Solitar group (GBS-group) is a finitely generated group acting on a tree with infinite cyclic edge and vertex stabilizers. A group is large if some finite index subgroup maps onto the free group F_2 . An explicit description is given for all index n subgroups in non-large generalized Baumslag–Solitar groups. Moreover, we give exact formulas for the numbers of subgroups, normal subgroups, and conjugacy classes of subgroups of each finite index in non-large GBS groups.
Cite:
Dudkin F.A.
Finite index subgroups in non-large generalized Baumslag–Solitar groups
Communications in Algebra. 2021. V.49. N9. P.3736-3742. DOI: 10.1080/00927872.2021.1904969 WOS Scopus OpenAlex
Finite index subgroups in non-large generalized Baumslag–Solitar groups
Communications in Algebra. 2021. V.49. N9. P.3736-3742. DOI: 10.1080/00927872.2021.1904969 WOS Scopus OpenAlex
Dates:
Submitted: | Dec 8, 2020 |
Published online: | Apr 7, 2021 |
Identifiers:
Web of science: | WOS:000637599200001 |
Scopus: | 2-s2.0-85103883330 |
OpenAlex: | W3141452116 |