Sciact
  • EN
  • RU

Finite index subgroups in non-large generalized Baumslag–Solitar groups Full article

Journal Communications in Algebra
ISSN: 0092-7872 , E-ISSN: 1532-4125
Output data Year: 2021, Volume: 49, Number: 9, Pages: 3736-3742 Pages count : 7 DOI: 10.1080/00927872.2021.1904969
Tags finite index subgroup, Baumslag–Solitar group, generalized Baumslag–Solitar group, non-large group
Authors Dudkin F.A. 1
Affiliations
1 Sobolev Institute of Mathematics

Funding (1)

1 Russian Science Foundation 19-11-00039

Abstract: A generalized Baumslag–Solitar group (GBS-group) is a finitely generated group acting on a tree with infinite cyclic edge and vertex stabilizers. A group is large if some finite index subgroup maps onto the free group F_2 . An explicit description is given for all index n subgroups in non-large generalized Baumslag–Solitar groups. Moreover, we give exact formulas for the numbers of subgroups, normal subgroups, and conjugacy classes of subgroups of each finite index in non-large GBS groups.
Cite: Dudkin F.A.
Finite index subgroups in non-large generalized Baumslag–Solitar groups
Communications in Algebra. 2021. V.49. N9. P.3736-3742. DOI: 10.1080/00927872.2021.1904969 WOS Scopus OpenAlex
Dates:
Submitted: Dec 8, 2020
Published online: Apr 7, 2021
Identifiers:
Web of science: WOS:000637599200001
Scopus: 2-s2.0-85103883330
OpenAlex: W3141452116
Citing:
DB Citing
OpenAlex 2
Scopus 2
Web of science 2
Altmetrics: