Sciact
  • EN
  • RU

Undecidability of the submonoid membership problem for a sufficiently large finite direct power of the heisenberg group Научная публикация

Журнал Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304
Вых. Данные Год: 2023, Том: 20, Номер: 1, Страницы: 293-305 Страниц : 13 DOI: 10.33048/semi.2023.20.024
Ключевые слова Nilpotent group, Heisenberg group, direct product, submonoid membership problem, rational set, decidability, Hilbert's 10th problem, interpretability of Diophantine equations in groups
Авторы Roman'kov V.A. 1,2
Организации
1 Federal State Autonomous Educational Institution of Higher Education "Siberian Federal University
2 Sobolev Institute of Mathematics

Информация о финансировании (1)

1 Российский научный фонд 19-71-10017

Реферат: The submonoid membership problem for a finitely generated group G is the decision problem, where for a given finitely generated submonoid M of G and a group element g it is asked whether g ∈ M. In this paper, we prove that for a sufficientlylarge direct power Hn of the Heisenberg group H, there existsa finitely generated submonoid M whose membership problem is algorithmically unsolvable. Thus, an answer is given to the question of M. Lohrey and B. Steinberg about the existence of a finitely generated nilpotent group with an unsolvable submonoid memb ership problem. It also answers the question of T. Colcombet, J.Ouaknine, P. Semukhin and J. Worrell about the existence of such a group in the class of direct powers of the Heisenberg group. This result implies the existence of a similar submonoid in any free nilpotent group Nk,c of sufficiently large rank k of the class c ≥ 2. The proofs are based on the undecidability of Hilbert's 10th problem and interpretation of Diophantine equations in nilpotent groups.
Библиографическая ссылка: Roman'kov V.A.
Undecidability of the submonoid membership problem for a sufficiently large finite direct power of the heisenberg group
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2023. V.20. N1. P.293-305. DOI: 10.33048/semi.2023.20.024 WOS Scopus РИНЦ
Даты:
Поступила в редакцию: 5 окт. 2022 г.
Опубликована в печати: 31 мар. 2023 г.
Опубликована online: 31 мар. 2023 г.
Идентификаторы БД:
Web of science: WOS:000959070400018
Scopus: 2-s2.0-85167888442
РИНЦ: 54768296
Цитирование в БД:
БД Цитирований
Web of science 3
Scopus 4
РИНЦ 2
Альметрики: