Sciact
  • EN
  • RU

Another tight description of faces in plane triangulations with minimum degree 4 Научная публикация

Журнал Discrete Mathematics
ISSN: 0012-365X , E-ISSN: 1872-681X
Вых. Данные Год: 2022, Том: 345, Номер: 9, Номер статьи : 112964, Страниц : 10 DOI: 10.1016/j.disc.2022.112964
Ключевые слова 3-polytope; Lebesgue's theorem; Planar graph; Plane triangulation; Structure properties; Weight
Авторы Borodin O.V. 1 , Ivanova A.O. 2
Организации
1 Sobolev Institute of Mathematics, Novosibirsk, 630090, Russia
2 Ammosov North-Eastern Federal University, Yakutsk, 677013, Russia

Информация о финансировании (2)

1 Институт математики им. С.Л. Соболева СО РАН FWNF-2022-0017
2 Министерство науки и высшего образования РФ FSRG-2020-0006

Реферат: It follows from the classical theorem by Lebesgue (1940) on the structure of minor faces in 3-polytopes that every plane triangulation with minimum degree at least 4 has a 3-face for which the set of degrees of its vertices is majorized by one of the following sequences: (4,4,∞), (4,5,19), (4,6,11), (4,7,9), (5,5,9), (5,6,7). In 1999, Jendrol' gave the following description of faces: (4,4,∞), (4,5,13), (4,6,17), (4,7,8), (5,5,7), (5,6,6). Also, Jendrol' (1999) conjectured that there is a face of one of the types: (4,4,∞), (4,5,10), (4,6,15), (4,7,7), (5,5,7), (5,6,6). In 2002, Lebesgue's description was strengthened by Borodin to (4,4,∞), (4,5,17), (4,6,11), (4,7,8), (5,5,8), (5,6,6). In 2014, we obtained the following tight description, which, in particular, disproves the above mentioned conjecture by Jendrol': (4,4,∞), (4,5,11), (4,6,10), (4,7,7), (5,5,7), (5,6,6). The purpose of this paper is to give another tight description of faces in plane triangulations with minimum degree at least 4: (4,4,∞), (4,6,10), (4,7,7), (5,5,8), (5,6,7).
Библиографическая ссылка: Borodin O.V. , Ivanova A.O.
Another tight description of faces in plane triangulations with minimum degree 4
Discrete Mathematics. 2022. V.345. N9. 112964 :1-10. DOI: 10.1016/j.disc.2022.112964 WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: 18 окт. 2021 г.
Принята к публикации: 24 апр. 2022 г.
Опубликована online: 9 мая 2022 г.
Идентификаторы БД:
Web of science: WOS:000806503700006
Scopus: 2-s2.0-85129486515
РИНЦ: 48589095
OpenAlex: W4229367144
Цитирование в БД:
БД Цитирований
Scopus 2
Web of science 2
OpenAlex 2
Альметрики: