Another tight description of faces in plane triangulations with minimum degree 4 Научная публикация
Журнал |
Discrete Mathematics
ISSN: 0012-365X , E-ISSN: 1872-681X |
||||
---|---|---|---|---|---|
Вых. Данные | Год: 2022, Том: 345, Номер: 9, Номер статьи : 112964, Страниц : 10 DOI: 10.1016/j.disc.2022.112964 | ||||
Ключевые слова | 3-polytope; Lebesgue's theorem; Planar graph; Plane triangulation; Structure properties; Weight | ||||
Авторы |
|
||||
Организации |
|
Информация о финансировании (2)
1 | Институт математики им. С.Л. Соболева СО РАН | FWNF-2022-0017 |
2 | Министерство науки и высшего образования РФ | FSRG-2020-0006 |
Реферат:
It follows from the classical theorem by Lebesgue (1940) on the structure of minor faces in 3-polytopes that every plane triangulation with minimum degree at least 4 has a 3-face for which the set of degrees of its vertices is majorized by one of the following sequences: (4,4,∞), (4,5,19), (4,6,11), (4,7,9), (5,5,9), (5,6,7). In 1999, Jendrol' gave the following description of faces: (4,4,∞), (4,5,13), (4,6,17), (4,7,8), (5,5,7), (5,6,6). Also, Jendrol' (1999) conjectured that there is a face of one of the types: (4,4,∞), (4,5,10), (4,6,15), (4,7,7), (5,5,7), (5,6,6). In 2002, Lebesgue's description was strengthened by Borodin to (4,4,∞), (4,5,17), (4,6,11), (4,7,8), (5,5,8), (5,6,6). In 2014, we obtained the following tight description, which, in particular, disproves the above mentioned conjecture by Jendrol': (4,4,∞), (4,5,11), (4,6,10), (4,7,7), (5,5,7), (5,6,6). The purpose of this paper is to give another tight description of faces in plane triangulations with minimum degree at least 4: (4,4,∞), (4,6,10), (4,7,7), (5,5,8), (5,6,7).
Библиографическая ссылка:
Borodin O.V.
, Ivanova A.O.
Another tight description of faces in plane triangulations with minimum degree 4
Discrete Mathematics. 2022. V.345. N9. 112964 :1-10. DOI: 10.1016/j.disc.2022.112964 WOS Scopus РИНЦ OpenAlex
Another tight description of faces in plane triangulations with minimum degree 4
Discrete Mathematics. 2022. V.345. N9. 112964 :1-10. DOI: 10.1016/j.disc.2022.112964 WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: | 18 окт. 2021 г. |
Принята к публикации: | 24 апр. 2022 г. |
Опубликована online: | 9 мая 2022 г. |
Идентификаторы БД:
Web of science: | WOS:000806503700006 |
Scopus: | 2-s2.0-85129486515 |
РИНЦ: | 48589095 |
OpenAlex: | W4229367144 |