Sciact
  • EN
  • RU

An inverse problem for the wave equation with nonlinear damping Full article

Journal Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260
Output data Year: 2023, Volume: 64, Number: 3, Pages: 670–685 Pages count : 16 DOI: 10.1134/S003744662303014X
Tags nonlinear wave equation, inverse problem, existence of solutions, stability estimate
Authors Romanov V.G. 1
Affiliations
1 Sobolev Institute of Mathematics

Funding (1)

1 Министерство науки и высшего образования РФ
Mathematical Center in Akademgorodok
075-15-2019-1613, 075-15-2022-281

Abstract: We study the inverse problem of recovering a coefficient at the nonlinearity in a second order hyperbolic equation with nonlinear damping. The unknown coefficient depends on one space variable x. Also, we consider the process of wave propagation along the semiaxis x > 0 given the derivative with respect to x at x = 0. As additional information in the inverse problem we consider the trace of a solution to the initial boundary value problem on a finite segment of the axis x = 0 and find the conditions for unique solvability of the direct problem. We also establish a local existence theorem and a global stability estimate for a solution to the inverse problem.
Cite: Romanov V.G.
An inverse problem for the wave equation with nonlinear damping
Siberian Mathematical Journal. 2023. V.64. N3. P.670–685. DOI: 10.1134/S003744662303014X WOS Scopus РИНЦ OpenAlex
Original: Романов В.Г.
Обратная задача для волнового уравнения с нелинейным поглощением
Сибирский математический журнал. 2023. Т.64. №3. С.635-652. DOI: 10.33048/smzh.2023.64.314 РИНЦ
Dates:
Submitted: Mar 9, 2023
Accepted: Apr 6, 2023
Published print: May 24, 2023
Published online: May 24, 2023
Identifiers:
Web of science: WOS:000996393600014
Scopus: 2-s2.0-85159925767
Elibrary: 61519392
OpenAlex: W4377990862
Citing:
DB Citing
Scopus 9
Web of science 6
OpenAlex 9
Elibrary 6
Altmetrics: