Noncommutative Novikov algebras Full article
Journal |
European Journal of Mathematics
ISSN: 2199-675X , E-ISSN: 2199-6768 |
||||
---|---|---|---|---|---|
Output data | Year: 2023, Volume: 9, Number: 2, Article number : 35, Pages count : 18 DOI: 10.1007/s40879-023-00632-1 | ||||
Tags | Novikov algebra · Derivation · Associative algebra · Gröbner–Shirshov basis | ||||
Authors |
|
||||
Affiliations |
|
Funding (1)
1 | Russian Science Foundation | 21-11-00286 |
Abstract:
The class of Novikov algebras is a popular object of study among classical nonassociative algebras. A generic example of a Novikov algebra may be constructed from an associative and commutative algebra A with a derivation d: it is enough to consider the operation a ? b = ad(b), a, b ? A, on the same space A. We consider a more general class of linear algebras which may be obtained in the same way from not necessarily commutative associative algebras with a derivation.
Cite:
Sartayev B.
, Kolesnikov P.
Noncommutative Novikov algebras
European Journal of Mathematics. 2023. V.9. N2. 35 :1-18. DOI: 10.1007/s40879-023-00632-1 WOS Scopus РИНЦ OpenAlex
Noncommutative Novikov algebras
European Journal of Mathematics. 2023. V.9. N2. 35 :1-18. DOI: 10.1007/s40879-023-00632-1 WOS Scopus РИНЦ OpenAlex
Dates:
Submitted: | Oct 24, 2022 |
Accepted: | Apr 4, 2023 |
Published print: | May 11, 2023 |
Published online: | May 11, 2023 |
Identifiers:
Web of science: | WOS:000986833000001 |
Scopus: | 2-s2.0-85159943649 |
Elibrary: | 61944611 |
OpenAlex: | W4376128984 |