On the structure of self-affine Jordan arcs in ℝ<sup>2</sup> Full article
Journal |
Demonstratio Mathematica
ISSN: 0420-1213 , E-ISSN: 2391-4661 |
||||
---|---|---|---|---|---|
Output data | Year: 2023, Volume: 56, Number: 1, Article number : 20220228, Pages count : 12 DOI: 10.1515/dema-2022-0228 | ||||
Tags | self-similar set, self-affine Jordan arc, zipper, weak separation property | ||||
Authors |
|
||||
Affiliations |
|
Funding (1)
1 |
Министерство науки и высшего образования РФ Mathematical Center in Akademgorodok |
075-15-2019-1613, 075-15-2022-281 |
Abstract:
We prove that if a self-affine arc γ∈R2 does not satisfy weak separation condition, then it is a segment of a parabola or a straight line. If a self-affine arc γ is not a segment of a parabola or a line, then it is a component of the attractor of a Jordan multizipper with the same set of generators.
Cite:
Tetenov A.
, Kutlimuratov A.
On the structure of self-affine Jordan arcs in ℝ<sup>2</sup>
Demonstratio Mathematica. 2023. V.56. N1. 20220228 :1-12. DOI: 10.1515/dema-2022-0228 WOS Scopus РИНЦ OpenAlex
On the structure of self-affine Jordan arcs in ℝ<sup>2</sup>
Demonstratio Mathematica. 2023. V.56. N1. 20220228 :1-12. DOI: 10.1515/dema-2022-0228 WOS Scopus РИНЦ OpenAlex
Dates:
Submitted: | Dec 20, 2022 |
Accepted: | Apr 12, 2023 |
Published print: | Jun 2, 2023 |
Published online: | Jun 2, 2023 |
Identifiers:
Web of science: | WOS:001000333700001 |
Scopus: | 2-s2.0-85161329326 |
Elibrary: | 62881420 |
OpenAlex: | W4379143099 |