Sciact
  • EN
  • RU

On the structure of self-affine Jordan arcs in ℝ<sup>2</sup> Full article

Journal Demonstratio Mathematica
ISSN: 0420-1213 , E-ISSN: 2391-4661
Output data Year: 2023, Volume: 56, Number: 1, Article number : 20220228, Pages count : 12 DOI: 10.1515/dema-2022-0228
Tags self-similar set, self-affine Jordan arc, zipper, weak separation property
Authors Tetenov Andrei 1 , Kutlimuratov Allanazar 2
Affiliations
1 Sobolev Mathematical Institute
2 Chirchik State Pedagogical University

Funding (1)

1 Министерство науки и высшего образования РФ
Mathematical Center in Akademgorodok
075-15-2019-1613, 075-15-2022-281

Abstract: We prove that if a self-affine arc γ∈R2 does not satisfy weak separation condition, then it is a segment of a parabola or a straight line. If a self-affine arc γ is not a segment of a parabola or a line, then it is a component of the attractor of a Jordan multizipper with the same set of generators.
Cite: Tetenov A. , Kutlimuratov A.
On the structure of self-affine Jordan arcs in ℝ<sup>2</sup>
Demonstratio Mathematica. 2023. V.56. N1. 20220228 :1-12. DOI: 10.1515/dema-2022-0228 WOS Scopus РИНЦ OpenAlex
Dates:
Submitted: Dec 20, 2022
Accepted: Apr 12, 2023
Published print: Jun 2, 2023
Published online: Jun 2, 2023
Identifiers:
Web of science: WOS:001000333700001
Scopus: 2-s2.0-85161329326
Elibrary: 62881420
OpenAlex: W4379143099
Citing:
DB Citing
Web of science 1
Scopus 1
Altmetrics: