Sciact
  • EN
  • RU

On operators dominated by the Kantorovich-Banach and Levi operators in locally solid lattices. Научная публикация

Журнал Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260
Вых. Данные Год: 2023, Том: 64, Номер: 3, Страницы: 720-724 Страниц : 5 DOI: 10.1134/S0037446623030199
Ключевые слова locally solid lattice, Lebesgue operator, Levi operator, KB-operator, lattice homomorphism
Авторы Gorokhova S.G. 1 , Emelyanov E.Yu. 2
Организации
1 Southern Mathematical Institute, Vladikavkaz, Russia
2 Sobolev Institute of Mathematics, Novosibirsk, Russia

Информация о финансировании (1)

1 Институт математики им. С.Л. Соболева СО РАН FWNF-2022-0004

Реферат: A linear operator T in a locally solid vector lattice (E,τ) is a Lebesgue operator, if Txα τ → 0 for every net in E satisfying xα ↓ 0; a KB-operator, if for every τ-bounded increasing net xα in E+ there exists x ∈ E with Txα τ → Tx; a quasi KB-operator, if T takes τ-bounded increasing nets in E+ to τ-Cauchy nets; a Levi operator, if for every τ-bounded increasing net xα in E+ there exists x ∈ E such that Txα o → Tx; and aquasi Levi operator, if T takes τ-bounded increasing nets in E+ to o-Cauchy ones. We address the domination problem for the quasi KB-operators and quasi Levi operators in locally solid vector lattices. Moreover, under study are some properties of Lebesgue, Levi, and KB-operators. In particular, we prove that the vector space of regularly Lebesgue operators is a subalgebra of the algebra of all regular operators.
Библиографическая ссылка: Gorokhova S.G. , Emelyanov E.Y.
On operators dominated by the Kantorovich-Banach and Levi operators in locally solid lattices.
Siberian Mathematical Journal. 2023. V.64. N3. P.720-724. DOI: 10.1134/S0037446623030199 WOS Scopus РИНЦ OpenAlex
Оригинальная: Горохова С.Г. , Емельянов Э.Ю.
Об операторах, мажорируемых операторами Канторовича - Банаха и операторами Леви в локально солидных решетках
Владикавказский математический журнал (Vladikavkaz Mathematical Journal). 2022. Т.24. №3. С.55-61. DOI: 10.46698/f5525-0005-3031-h Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: 10 окт. 2021 г.
Принята к публикации: 4 мар. 2023 г.
Опубликована в печати: 24 мая 2023 г.
Опубликована online: 24 мая 2023 г.
Идентификаторы БД:
Web of science: WOS:000996393600019
Scopus: 2-s2.0-85160920068
РИНЦ: 62466540
OpenAlex: W4377990865
Цитирование в БД:
БД Цитирований
Scopus 2
Web of science 4
OpenAlex 2
РИНЦ 1
Альметрики: