Sciact
  • EN
  • RU

The Multi-Valued Quasimöbius Mappings on the Riemann Sphere Full article

Journal Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260
Output data Year: 2023, Volume: 64, Number: 3, Pages: 514–524 Pages count : 11 DOI: 10.1134/S0037446623030023
Tags quasiconformal mapping, mapping with bounded distortion, quasimeromorphic mapping, Ptolemaic characteristic tetrad, continuum of bounded turning, multi-valued mappings of BAD class
Authors Aseev V.V. 1
Affiliations
1 Sobolev Institute of Mathematics, Novosibirsk, Russia

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0005

Abstract: Suppose that a multi-valued mapping F : D -> 2((C) over bar) of a domain D in the sphere (C) over bar with disjoint images of distinct points boundedly distorts the Ptolemaic characteristic of generalized tetrads (quadruples of disjoint compact sets). Suppose that the image F(x) of each x is an element of D has at most N components, each of which is a continuum of bounded turning. Then F, up to the values at some isolated branch points, is the inverse of a mapping with bounded distortion in the sense of Reshetnyak. In particular, if D = (C) over bar then the left inverse to F is the composition of a quasiconformal automorphism of (C) over bar and a rational function.
Cite: Aseev V.V.
The Multi-Valued Quasimöbius Mappings on the Riemann Sphere
Siberian Mathematical Journal. 2023. V.64. N3. P.514–524. DOI: 10.1134/S0037446623030023 WOS Scopus РИНЦ OpenAlex
Original: Асеев В.В.
Многозначные квазимебиусовы отображения на римановой сфере
Сибирский математический журнал. 2023. Т.64. №3. С.450-464. DOI: 10.33048/smzh.2023.64.302 РИНЦ
Dates:
Submitted: Nov 18, 2022
Accepted: Feb 21, 2023
Published print: May 24, 2023
Published online: May 24, 2023
Identifiers:
Web of science: WOS:000996393600002
Scopus: 2-s2.0-85147982830
Elibrary: 61700482
OpenAlex: W4377990996
Citing:
DB Citing
Web of science 2
Scopus 3
OpenAlex 2
Elibrary 2
Altmetrics: