Sciact
  • EN
  • RU

On cohesive powers of linear orders Научная публикация

Журнал Journal of Symbolic Logic
ISSN: 0022-4812
Вых. Данные Год: 2023, Том: 88, Номер: 3, Страницы: 947-1004 Страниц : 58 DOI: 10.1017/jsl.2023.14
Ключевые слова computable structures, effective ultrapowers, cohesive powers, linear orders
Авторы DIimitrov Rumen 1 , Harizanov Valentina 2 , Morozov Andrey 3 , Shafer Paul 4 , Soskova Alexandra A. 5 , Vatev Stefan V. 1
Организации
1 Department of Mathematics and Philosophy, Western Illinois University
2 Department of Mathematics, The George Washington University
3 Sobolev Institute of Mathematics
4 School of Mathematics University of Leeds
5 Department of Mathematical Logic and Applications Faculty of Mathematics and Informatics Sofia University

Реферат: Cohesive powers of computable structures are effective analogs of ultrapowers, where cohesive sets play the role of ultrafilters. Let ω, ζ and η denote the respective order-types of the natural numbers, the integers, and the rationals when thought of as linear orders. We investigate the cohesive powers of computable linear orders, with special emphasis on computable copies of ω. If L is a computable copy of ω that is computably isomorphic to the usual presentation of ω, then every cohesive power of L has order-type ω + ζη. However, there are computable copies of ω, necessarily not computably isomorphic to the usual presentation, having cohesive powers not elementarily equivalent to ω + ζη. For example, we show that there is a computable copy of ω with a cohesive power of order-type ω + η. Our most general result is that if X N \ {0} is a Boolean combination of Σ2 sets, thought of as a set of finite order-types, then there is a computable copy of ω with a cohesive power of order-type ω + σ(X ? {ω + ζη + ω*}), where σ(X ? {ω + ζη + ω*}) denotes the shuffle of the order-types in X and the order-type ω + ζη + ω*. Furthermore, if X is finite and non-empty, then there is a computable copy of ω with a cohesive power of order-type ω + σ(X ).
Библиографическая ссылка: DIimitrov R. , Harizanov V. , Morozov A. , Shafer P. , Soskova A.A. , Vatev S.V.
On cohesive powers of linear orders
Journal of Symbolic Logic. 2023. V.88. N3. P.947-1004. DOI: 10.1017/jsl.2023.14 WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: 18 февр. 2021 г.
Опубликована в печати: 13 мар. 2023 г.
Опубликована online: 13 мар. 2023 г.
Идентификаторы БД:
Web of science: WOS:001058004400003
Scopus: 2-s2.0-85150368099
РИНЦ: 61147581
OpenAlex: W4324065242
Цитирование в БД:
БД Цитирований
OpenAlex 1
Scopus 1
Web of science 1
Альметрики: