Sciact
  • EN
  • RU

On binomial coefficients of real arguments Full article

Journal Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304
Output data Year: 2023, Volume: 20, Number: 1, Pages: 514-523 Pages count : 10 DOI: 10.33048/semi.2023.20.031
Tags factorial, binomial coefficient, gamma function, real binomial coefficient.
Authors Fedoryaeva T.I. 1
Affiliations
1 Sobolev Institute of Mathematics

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0018

Abstract: As is well-known, a generalization of the classical concept of the factorial n! for a real number $x\in {\mathbb R}$ is the value of Euler's gamma function $\Gamma(1+x)$. In this connection, the notion of a binomial coefficient naturally arose for admissible values of the real arguments. We prove by elementary means a number of properties of binomial coefficients $\binom{r}{\alpha}$ of real arguments $r,\,\alpha\in {\mathbb R}$\, such as analogs of unimodality, symmetry, Pascal's triangle, etc. for classical binomial coefficients. The asymptotic behavior of such generalized binomial coefficients of a special form is established.
Cite: Fedoryaeva T.I.
On binomial coefficients of real arguments
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2023. V.20. N1. P.514-523. DOI: 10.33048/semi.2023.20.031 WOS Scopus РИНЦ
Dates:
Submitted: May 11, 2022
Accepted: Jun 6, 2023
Published print: Jul 18, 2023
Published online: Jul 18, 2023
Identifiers:
Web of science: WOS:001034303400002
Scopus: 2-s2.0-85167904825
Elibrary: 54768303
Citing: Пока нет цитирований
Altmetrics: