Sciact
  • EN
  • RU

Simulation of Two-Phase Flow in Models with Micro-porous Material Научная публикация

Конференция The International Conference on Computational Sciences and its Applications
03-06 июл. 2023 , Athens
Сборник Computational Science and Its Applications – ICCSA 2023 Workshops Athens, Greece, July 3–6, 2023, Proceedings
Сборник, Springer. 2023. ISBN 9783031371103.
Журнал Lecture Notes in Computer Science
ISSN: 0302-9743 , E-ISSN: 1611-3349
Вых. Данные Год: 2023, Том: 14106, Страницы: 3-18 Страниц : 16 DOI: 10.1007/978-3-031-37111-0_1
Ключевые слова Phase-field method · flow in porous media · finite-difference simulation
Авторы Lisitsa Vadim 1 , Khachkova Tatyana 2 , Krutko Vladislav 3 , Avdonin Alexander 3
Организации
1 Institute of Mathematics SB RAS, Novosibirsk, Russia
2 Institute of Petroleum Geology and Geophysics SB RAS, Novosibirsk, Russia
3 Gazpromneft NTC, Saint-Petersburg, Russia

Информация о финансировании (2)

1 Российский научный фонд 21-71-20003
2 Институт нефтегазовой геологии и геофизики им. А. А. Трофимука СО РАН FWZZ-2022-0022

Реферат: The paper presents an original numerical algorithm to simulate coupled two-phase fluid flow in domains containing open pores and microporous material. To simulate the coupled flow we use the time-dependent Navier-Stokes-Brinkman equation. The transport of the phases is governed by the Cahn-Hilliard equation in the open pores and by the Buckley-Leverett equation in the porous material. We suggested a unified finite-difference approximation of the two transport equations, that satisfy the natural conjugation conditions. However, Cahn-Hilliard requires an additional boundary condition, that must be satisfied at the interface to ensure the wetting angle.
Библиографическая ссылка: Lisitsa V. , Khachkova T. , Krutko V. , Avdonin A.
Simulation of Two-Phase Flow in Models with Micro-porous Material
В сборнике Computational Science and Its Applications – ICCSA 2023 Workshops Athens, Greece, July 3–6, 2023, Proceedings. – Springer., 2023. – Т.Part III. – C.3-18. – ISBN 9783031371103. DOI: 10.1007/978-3-031-37111-0_1 Scopus OpenAlex
Даты:
Опубликована в печати: 29 июн. 2023 г.
Опубликована online: 29 июн. 2023 г.
Идентификаторы БД:
Scopus: 2-s2.0-85165075304
OpenAlex: W4382366389
Цитирование в БД:
БД Цитирований
OpenAlex 1
Scopus 1
Альметрики: