Sciact
  • EN
  • RU

Numerical Evaluating the Permeability of Rocks Based on Correlation Dependence on Geometry Научная публикация

Конференция The International Conference on Computational Sciences and its Applications
03-06 июл. 2023 , Athens
Сборник Computational Science and Its Applications – ICCSA 2023 Workshops Athens, Greece, July 3–6, 2023, Proceedings
Сборник, Springer. 2023. ISBN 9783031371103.
Журнал Lecture Notes in Computer Science
ISSN: 0302-9743 , E-ISSN: 1611-3349
Вых. Данные Год: 2023, Том: 14106, Страницы: 91-102 Страниц : 12 DOI: 10.1007/978-3-031-37111-0_7
Ключевые слова Permeability · numerical estimation · porosity · correlation dependence · scaling · digital rock physics · CT-images
Авторы Lisitsa Vadim 1 , Khachkova Tatiana 2 , Sotnikov Oleg 3 , Islamov Ilshat 3 , Ganiev Dinis 3
Организации
1 Institute of Mathematics SB RAS, Novosibirsk, Russia
2 Institute of Petroleum Geology and Geophysics SB RAS, Novosibirsk, Russia
3 TatNIPIneft Institute, PJSC Tatneft named after V.D. Shashin, Bugulma, Russia

Информация о финансировании (2)

1 Российский научный фонд 21-71-20003
2 Институт нефтегазовой геологии и геофизики им. А. А. Трофимука СО РАН FWZZ-2022-0022

Реферат: We present a resource-saving algorithm for numerical evaluation of the absolute permeability of a rock from the sample’s CT-images of huge size, which makes it possible to perform such an assessment using limited computing resources, in particular, personal computers. It is based on a decomposition of the 3D sample image into small representative sub-samples, for which the absolute permeability is estimated based on the numerical solution of the Stokes equation in a static formulation, followed by a creation of the functional dependencies between the permeability and open porosity. After that these dependencies can be extended to the entire original sample or to the full-sized core sample.
Библиографическая ссылка: Lisitsa V. , Khachkova T. , Sotnikov O. , Islamov I. , Ganiev D.
Numerical Evaluating the Permeability of Rocks Based on Correlation Dependence on Geometry
В сборнике Computational Science and Its Applications – ICCSA 2023 Workshops Athens, Greece, July 3–6, 2023, Proceedings. – Springer., 2023. – Т.Part III. – C.91-102. – ISBN 9783031371103. DOI: 10.1007/978-3-031-37111-0_7 Scopus OpenAlex
Даты:
Опубликована в печати: 29 июн. 2023 г.
Опубликована online: 29 июн. 2023 г.
Идентификаторы БД:
Scopus: 2-s2.0-85165101664
OpenAlex: W4382366420
Цитирование в БД: Пока нет цитирований
Альметрики: