On radicals of Novikov algebras Full article
Journal |
Communications in Algebra
ISSN: 0092-7872 , E-ISSN: 1532-4125 |
||||
---|---|---|---|---|---|
Output data | Year: 2024, Volume: 52, Number: 1, Pages: 140-147 Pages count : 8 DOI: 10.1080/00927872.2023.2235420 | ||||
Tags | Novikov algebra; radical: prime algebra; semiprime algebra; finite dimensional algebra; quasiregular ideal | ||||
Authors |
|
||||
Affiliations |
|
Funding (1)
1 | Sobolev Institute of Mathematics | FWNF-2022-0002 |
Abstract:
We show that in a prime nonassociative Novikov algebra every nonzero ideal is non-associative. We prove that Baer (and Andrunakievich) radical and the largest left quasiregular ideal coincide in finite dimensional Novikov algebras over a field of characteristic 0 or algebraically closed field of odd characteristic. We show non-existence of right quasiregular radical in finite dimensional Novikov algebras.
Cite:
Panasenko A.S.
On radicals of Novikov algebras
Communications in Algebra. 2024. V.52. N1. P.140-147. DOI: 10.1080/00927872.2023.2235420 WOS Scopus РИНЦ OpenAlex
On radicals of Novikov algebras
Communications in Algebra. 2024. V.52. N1. P.140-147. DOI: 10.1080/00927872.2023.2235420 WOS Scopus РИНЦ OpenAlex
Dates:
Submitted: | Dec 22, 2022 |
Accepted: | Jul 5, 2023 |
Published online: | Jul 20, 2023 |
Published print: | Jan 25, 2024 |
Identifiers:
Web of science: | WOS:001030028100001 |
Scopus: | 2-s2.0-85165487360 |
Elibrary: | 62401482 |
OpenAlex: | W4384934744 |
Citing:
DB | Citing |
---|---|
Scopus | 1 |