Interpretable Machine Learning for Financial Applications Научная публикация
Сборник | Machine Learning for Data Science Handbook Сборник, Springer Nature Switzerland AG. 2023. 975 c. ISBN 9783031246289. |
||||||||
---|---|---|---|---|---|---|---|---|---|
Вых. Данные | Год: 2023, Страницы: 721-749 Страниц : 29 DOI: 10.1007/978-3-031-24628-9_32 | ||||||||
Авторы |
|
||||||||
Организации |
|
Реферат:
This chapter describes machine learning (ML) for financial applications with a focus on interpretable relational methods. It presents financial tasks, methodologies, and techniques in this ML area. It includes time dependence, data selection, forecast horizon, measures of success, quality of patterns, hypothesis evaluation, problem ID, method profile, and attribute-based and interpretable relational methodologies. The second part of this chapter presents ML models and practice in finance. It covers the use of ML in portfolio management, design of interpretable trading rules, and discovering money-laundering schemes using the machine learning methodology.
Библиографическая ссылка:
Kovalerchuk B.
, Vityaev E.
, Demin A.
, Wilinski A.
Interpretable Machine Learning for Financial Applications
В сборнике Machine Learning for Data Science Handbook. – Springer Nature Switzerland AG., 2023. – C.721-749. – ISBN 9783031246289. DOI: 10.1007/978-3-031-24628-9_32 Scopus OpenAlex
Interpretable Machine Learning for Financial Applications
В сборнике Machine Learning for Data Science Handbook. – Springer Nature Switzerland AG., 2023. – C.721-749. – ISBN 9783031246289. DOI: 10.1007/978-3-031-24628-9_32 Scopus OpenAlex
Даты:
Опубликована в печати: | 2 авг. 2023 г. |
Опубликована online: | 18 авг. 2023 г. |
Идентификаторы БД:
Scopus: | 2-s2.0-85195566957 |
OpenAlex: | W4385950389 |