Sciact
  • EN
  • RU

On estimation of the global error of numerical solution on canard-cycles Full article

Journal Mathematics and Computers in Simulation
ISSN: 0378-4754
Output data Year: 2014, Volume: 116, Pages: 59-74 Pages count : 16 DOI: 10.1016/j.matcom.2014.10.003
Tags Nonlinear dynamical system; Canards; Global error of numerical integration; Chemical kinetics
Authors Chumakov G.A. 1,3 , Lashina E.A. 2,3 , Chumakova N.A. 2,3
Affiliations
1 Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk 630090, Russia
2 Boreskov Institute of Catalysis, pr. Akad. Lavrent’eva 5, Novosibirsk 630090, Russia
3 Novosibirsk State University, ul. Pirogova 2, Novosibirsk 630090, Russia

Abstract: Under study is the behavior of the global error of numerical integration in the two-variable mathematical model of a heterogeneous catalytic reaction. Numerical estimation of the global error indicates that there is a high sensitive dependence of the solutions on initial conditions due to the existence of a tunnel-type bundle of trajectories which is formed by the stable and unstable canards. We show that the exponential growth of the norm of the fundamental matrix of solutions of the system linearized around a stable canard-cycle yields exponential growth of the leading term in the global error of numerical solution.
Cite: Chumakov G.A. , Lashina E.A. , Chumakova N.A.
On estimation of the global error of numerical solution on canard-cycles
Mathematics and Computers in Simulation. 2014. V.116. P.59-74. DOI: 10.1016/j.matcom.2014.10.003 WOS Scopus РИНЦ OpenAlex
Dates:
Submitted: Apr 29, 2011
Accepted: Oct 13, 2014
Published online: Oct 22, 2014
Published print: Jun 9, 2015
Identifiers:
Web of science: WOS:000357240400004
Scopus: 2-s2.0-84930865063
Elibrary: 23970820
OpenAlex: W2048082096
Citing:
DB Citing
OpenAlex 2
Scopus 2
Elibrary 5
Altmetrics: