Sciact
  • EN
  • RU

On estimation of the global error of numerical solution on canard-cycles Научная публикация

Журнал Mathematics and Computers in Simulation
ISSN: 0378-4754
Вых. Данные Год: 2014, Том: 116, Страницы: 59-74 Страниц : 16 DOI: 10.1016/j.matcom.2014.10.003
Ключевые слова Nonlinear dynamical system; Canards; Global error of numerical integration; Chemical kinetics
Авторы Chumakov G.A. 1,3 , Lashina E.A. 2,3 , Chumakova N.A. 2,3
Организации
1 Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk 630090, Russia
2 Boreskov Institute of Catalysis, pr. Akad. Lavrent’eva 5, Novosibirsk 630090, Russia
3 Novosibirsk State University, ul. Pirogova 2, Novosibirsk 630090, Russia

Реферат: Under study is the behavior of the global error of numerical integration in the two-variable mathematical model of a heterogeneous catalytic reaction. Numerical estimation of the global error indicates that there is a high sensitive dependence of the solutions on initial conditions due to the existence of a tunnel-type bundle of trajectories which is formed by the stable and unstable canards. We show that the exponential growth of the norm of the fundamental matrix of solutions of the system linearized around a stable canard-cycle yields exponential growth of the leading term in the global error of numerical solution.
Библиографическая ссылка: Chumakov G.A. , Lashina E.A. , Chumakova N.A.
On estimation of the global error of numerical solution on canard-cycles
Mathematics and Computers in Simulation. 2014. V.116. P.59-74. DOI: 10.1016/j.matcom.2014.10.003 WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: 29 апр. 2011 г.
Принята к публикации: 13 окт. 2014 г.
Опубликована online: 22 окт. 2014 г.
Опубликована в печати: 9 июн. 2015 г.
Идентификаторы БД:
Web of science: WOS:000357240400004
Scopus: 2-s2.0-84930865063
РИНЦ: 23970820
OpenAlex: W2048082096
Цитирование в БД:
БД Цитирований
OpenAlex 2
Scopus 2
РИНЦ 5
Альметрики: