A Method for the 2-D Quasi-Isometric Regular Grid Generation Научная публикация
Журнал |
Journal of Computational Physics
ISSN: 0021-9991 , E-ISSN: 1090-2716 |
||||
---|---|---|---|---|---|
Вых. Данные | Год: 1998, Том: 143, Номер: 1, Страницы: 1-28 Страниц : 28 DOI: 10.1006/jcph.1998.5968 | ||||
Авторы |
|
||||
Организации |
|
Реферат:
A method for the generation of quasi-isometric boundary-fitted curvilinear coordinate systems for arbitrary domains is developed on the basis of the theory of conformal, quasi-conformal, and quasi-isometric mappings and results from the non-Euclidean geometry concerning surfaces of constant curvature. The method as it is proposed has an advantage over similar methods developed earlier in that the number of unknown parameters to be found is decreased, strict boundaries for parameters are found, and a simple and efficient process of identification of an unknown parameter is given. The reliability of the method is assured by an existence and uniqueness theorem for quasi-isometric maps between physical regions and geodesic quadrangles on surfaces of constant curvature which are used to constrict quasi-isometric grids in physical domains. We formulate the Riemannian metric consistent with this theorem which is available analytically. Illustrations of this technique are given for various domains.
Библиографическая ссылка:
Chumakov G.A.
, Chumakov S.G.
A Method for the 2-D Quasi-Isometric Regular Grid Generation
Journal of Computational Physics. 1998. V.143. N1. P.1-28. DOI: 10.1006/jcph.1998.5968 WOS Scopus РИНЦ OpenAlex
A Method for the 2-D Quasi-Isometric Regular Grid Generation
Journal of Computational Physics. 1998. V.143. N1. P.1-28. DOI: 10.1006/jcph.1998.5968 WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: | 24 мар. 1997 г. |
Принята к публикации: | 24 дек. 1997 г. |
Опубликована в печати: | 10 июн. 1998 г. |
Опубликована online: | 25 мая 2002 г. |
Идентификаторы БД:
Web of science: | WOS:000074169200001 |
Scopus: | 2-s2.0-0013323185 |
РИНЦ: | 13289950 |
OpenAlex: | W1994981137 |