Sciact
  • EN
  • RU

On the Existence of G-Permutable Subgroups in Alternating Groups Full article

Journal Bulletin of the Malaysian Mathematical Sciences Society
ISSN: 0126-6705 , E-ISSN: 2180-4206
Output data Year: 2023, Volume: 46, Number: 5, Article number : 177, Pages count : 16 DOI: 10.1007/s40840-023-01569-0
Tags Finite group · Alternating group · G-permutable subgroup
Authors Yang N. 1 , Galt A. 2
Affiliations
1 School of Science, Jiangnan University, Wuxi, People’s Republic of China
2 Sobolev Institute of Mathematics, Novosibirsk, Russia

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0002

Abstract: Recall that a subgroup A of a group G iscalled G-permutable in G if for every subgroup B of G there exists an element x ∈ G such that A and Bx commute. The following question was posed in the Kourovka Notebook: is there an integer n such that for all m > n the alternating group Am has no non-trivial Am-permutable subgroups? We give a positive answer to this question. Moreover, in the case of prime p we prove that Ap has no non-trivial Ap-permutable subgroups except p = 5.
Cite: Yang N. , Galt A.
On the Existence of G-Permutable Subgroups in Alternating Groups
Bulletin of the Malaysian Mathematical Sciences Society. 2023. V.46. N5. 177 :1-16. DOI: 10.1007/s40840-023-01569-0 WOS Scopus РИНЦ OpenAlex
Dates:
Submitted: Feb 1, 2023
Accepted: Jul 28, 2023
Published print: Aug 21, 2023
Published online: Aug 21, 2023
Identifiers:
Web of science: WOS:001052950100002
Scopus: 2-s2.0-85168468139
Elibrary: 62802486
OpenAlex: W4386033335
Citing: Пока нет цитирований
Altmetrics: