Sciact
  • EN
  • RU

On characterization by Gruenberg–Kegel graph of finite simple exceptional groups of Lie type Научная публикация

Журнал European Journal of Mathematics
ISSN: 2199-675X , E-ISSN: 2199-6768
Вых. Данные Год: 2023, Том: 9, Номер: 3, Номер статьи : 78, Страниц : 17 DOI: 10.1007/s40879-023-00672-7
Ключевые слова Finite group · Simple group · Exceptional group of Lie type · Gruenberg–Kegel graph (prime graph) · Recognition by Gruenberg–Kegel graph
Авторы Maslova N.V. 1,2 , Panshin Viktor V. 3,4 , Staroletov Alexey 3
Организации
1 Krasovskii Institute of Mathematics and Mechanics UB RAS, Yekaterinburg, Russia
2 Ural Federal University, Yekaterinburg, Russia
3 Novosibirsk State University, Novosibirsk, Russia
4 Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia

Информация о финансировании (2)

1 Институт математики им. С.Л. Соболева СО РАН FWNF-2022-0002
2 Министерство науки и высшего образования РФ
Математический центр в Академгородке
075-15-2019-1613, 075-15-2022-281

Реферат: The Gruenberg–Kegel graph(ortheprimegraph) (G)of a finite group G is the graph whose vertex set is the set of prime divisors of |G| and in which two distinct vertices r and s areadjacent if and only if there exists an element of orderrsin G. A finite group G is called almost recognizable (by Gruenberg–Kegel graph) if there is only a finite number of pairwisenon-isomorphic finite groups having Gruenberg–Kegel graphas G. If G is not almost recognizable, then it is called unrecognizable (by Gruenberg–Kegel graph). Recently Peter J. Cameron and the first author have proved that if a finite group is almost recognizable, then the group is almost simple. Thus, the question of which almost simple groups (in particular, finite simple groups) are almost recognizable is of primeinterest. We prove that every finite simple exceptional group of Lie type, which is isomorphic to neither 2B2(22n+1) with n ⩾ 1 nor G2(3) and whose Gruenberg–Kegel
Библиографическая ссылка: Maslova N.V. , Panshin V.V. , Staroletov A.
On characterization by Gruenberg–Kegel graph of finite simple exceptional groups of Lie type
European Journal of Mathematics. 2023. V.9. N3. 78 :1-17. DOI: 10.1007/s40879-023-00672-7 WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: 3 февр. 2023 г.
Принята к публикации: 18 июл. 2023 г.
Опубликована в печати: 23 авг. 2023 г.
Опубликована online: 23 авг. 2023 г.
Идентификаторы БД:
Web of science: WOS:001053799100001
Scopus: 2-s2.0-85168680047
РИНЦ: 63302294
OpenAlex: W4386091275
Цитирование в БД:
БД Цитирований
OpenAlex 2
Web of science 3
Scopus 3
РИНЦ 2
Альметрики: