Generalized Wiener–Hopf equations with directly Riemann integrable inhomogeneous term Full article
Journal |
Journal of Mathematical Sciences (United States)
ISSN: 1072-3374 , E-ISSN: 1573-8795 |
||
---|---|---|---|
Output data | Year: 2023, Volume: 271, Pages: 400–405 Pages count : 6 DOI: 10.1007/s10958-023-06549-0 | ||
Tags | Wiener–Hopf equation · Direct Riemann integrability · Probability distribution | ||
Authors |
|
||
Affiliations |
|
Funding (1)
1 | Sobolev Institute of Mathematics | FWNF-2022-0004 |
Abstract:
We establish the asymptotic behavior of the solution to the generalized Wiener–Hopf equation whose kernel is a probability distribution, whereas the inhomogeneous term is a directly Riemann integrable function. To this end, we prove that the convolution of a finite measure and a directly Riemann integrable function is also a directly Riemann integrable function.
Cite:
Sgibnev M.S.
Generalized Wiener–Hopf equations with directly Riemann integrable inhomogeneous term
Journal of Mathematical Sciences (United States). 2023. V.271. P.400–405. DOI: 10.1007/s10958-023-06549-0 Scopus РИНЦ OpenAlex
Generalized Wiener–Hopf equations with directly Riemann integrable inhomogeneous term
Journal of Mathematical Sciences (United States). 2023. V.271. P.400–405. DOI: 10.1007/s10958-023-06549-0 Scopus РИНЦ OpenAlex
Dates:
Submitted: | May 23, 2023 |
Accepted: | Jul 3, 2023 |
Published print: | Sep 1, 2023 |
Published online: | Sep 1, 2023 |
Identifiers:
Scopus: | 2-s2.0-85169329658 |
Elibrary: | 63713138 |
OpenAlex: | W4386350206 |
Citing:
Пока нет цитирований