Sciact
  • EN
  • RU

Generalized Wiener–Hopf equations with directly Riemann integrable inhomogeneous term Full article

Journal Journal of Mathematical Sciences (United States)
ISSN: 1072-3374 , E-ISSN: 1573-8795
Output data Year: 2023, Volume: 271, Pages: 400–405 Pages count : 6 DOI: 10.1007/s10958-023-06549-0
Tags Wiener–Hopf equation · Direct Riemann integrability · Probability distribution
Authors Sgibnev M.S. 1
Affiliations
1 Sobolev Institute of Mathematics, Novosibirsk, Russia

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0004

Abstract: We establish the asymptotic behavior of the solution to the generalized Wiener–Hopf equation whose kernel is a probability distribution, whereas the inhomogeneous term is a directly Riemann integrable function. To this end, we prove that the convolution of a finite measure and a directly Riemann integrable function is also a directly Riemann integrable function.
Cite: Sgibnev M.S.
Generalized Wiener–Hopf equations with directly Riemann integrable inhomogeneous term
Journal of Mathematical Sciences (United States). 2023. V.271. P.400–405. DOI: 10.1007/s10958-023-06549-0 Scopus РИНЦ OpenAlex
Dates:
Submitted: May 23, 2023
Accepted: Jul 3, 2023
Published print: Sep 1, 2023
Published online: Sep 1, 2023
Identifiers:
Scopus: 2-s2.0-85169329658
Elibrary: 63713138
OpenAlex: W4386350206
Citing: Пока нет цитирований
Altmetrics: