The Agrachev–Barilari–Boscain Method and Estimates for the Number of Segments of Horizontal Broken Lines Joining Points in the Canonical Carnot Group G3,3 Full article
Journal |
Proceedings of the Steklov Institute of Mathematics
ISSN: 0081-5438 , E-ISSN: 1531-8605 |
||
---|---|---|---|
Output data | Year: 2023, Volume: 321, Number: 1, Pages: 97-106 Pages count : 10 DOI: 10.1134/s0081543823020074 | ||
Authors |
|
||
Affiliations |
|
Funding (1)
1 |
Министерство науки и высшего образования РФ Mathematical Center in Akademgorodok |
075-15-2019-1613, 075-15-2022-281 |
Abstract:
Using a generalization of the Agrachev–Barilari–Boscain method for proving the Rashevskii–Chow theorem, we estimate the minimum number NG3,3 of segments of horizontal broken lines joining two arbitrary points on the six-dimensional two-step canonical Carnot group G3,3 with corank 3 horizontal distribution. We prove that NG3,3 =3.
Cite:
Greshnov A.V.
The Agrachev–Barilari–Boscain Method and Estimates for the Number of Segments of Horizontal Broken Lines Joining Points in the Canonical Carnot Group G3,3
Proceedings of the Steklov Institute of Mathematics. 2023. V.321. N1. P.97-106. DOI: 10.1134/s0081543823020074 WOS Scopus РИНЦ OpenAlex
The Agrachev–Barilari–Boscain Method and Estimates for the Number of Segments of Horizontal Broken Lines Joining Points in the Canonical Carnot Group G3,3
Proceedings of the Steklov Institute of Mathematics. 2023. V.321. N1. P.97-106. DOI: 10.1134/s0081543823020074 WOS Scopus РИНЦ OpenAlex
Original:
Грешнов А.В.
Метод Аграчева–Барилари–Боскайна и оценки числа звеньев горизонтальных ломаных, соединяющих точки в канонической группе Карно G3,3
Труды Математического института имени В.А. Стеклова. 2023. Т.321. С.108–117. DOI: 10.4213/tm4320 РИНЦ OpenAlex
Метод Аграчева–Барилари–Боскайна и оценки числа звеньев горизонтальных ломаных, соединяющих точки в канонической группе Карно G3,3
Труды Математического института имени В.А. Стеклова. 2023. Т.321. С.108–117. DOI: 10.4213/tm4320 РИНЦ OpenAlex
Dates:
Submitted: | Apr 21, 2022 |
Accepted: | Jan 9, 2023 |
Published print: | Sep 14, 2023 |
Published online: | Sep 14, 2023 |
Identifiers:
Web of science: | WOS:001094606600007 |
Scopus: | 2-s2.0-85171174782 |
Elibrary: | 64547125 |
OpenAlex: | W4386702474 |