Sciact
  • EN
  • RU

On the Existence of Fuzzy Contractual Allocations, Fuzzy Core and Perfect Competition in an Exchange Economy Научная публикация

Конференция 22nd International conference "Mathematical Optimization Theory and Operations Research"
02-08 июл. 2023 , Екатеринбург
Сборник Mathematical Optimization Theory and Operations Research: Recent Trends
Сборник, Springer. 2023. 406 c.
Журнал Communications in Computer and Information Science
ISSN: 1865-0929
Вых. Данные Год: 2023, Страницы: 308-323 Страниц : 16 DOI: 10.1007/978-3-031-43257-6_23
Ключевые слова Fuzzy core · Fuzzy contractual allocation · Edgeworth equilibria · Perfect competition · Existence theorems
Авторы Marakulin Valeriy M. 1
Организации
1 Sobolev Institute of Mathematics, Russian Academy of Sciences, Novosibirsk, Russia

Информация о финансировании (1)

1 Институт математики им. С.Л. Соболева СО РАН FWNF-2022-0019

Реферат: The fuzzy core is well-known in theoretical economics, it is widely applied to model the conditions of perfect competition. In contrast, the original author’s concept of fuzzy contractual allocation as a specific element of the fuzzy core is not so widely known in the literature, but it also represents a (refined) model of perfect competition. This motivates the study of its validity: the existence of fuzzily contractual allocations in an economic model; it also implies the existence (non-emptiness) of the fuzzy core and develops an approach from [15]. The proof is based on two well-known theorems: Michael’s theorem on the existence of a continuous selector for a point-to-set mapping and Brouwer’s fixed point theorem. In literature, only the non-emptiness of the fuzzy core was proven under essentially stronger assumptions— typically, it applies replicated economies and Edgeworth equilibria.
Библиографическая ссылка: Marakulin V.M.
On the Existence of Fuzzy Contractual Allocations, Fuzzy Core and Perfect Competition in an Exchange Economy
В сборнике Mathematical Optimization Theory and Operations Research: Recent Trends. – Springer., 2023. – Т.1881. – C.308-323. DOI: 10.1007/978-3-031-43257-6_23 Scopus OpenAlex
Даты:
Опубликована в печати: 21 сент. 2023 г.
Опубликована online: 21 сент. 2023 г.
Идентификаторы БД:
Scopus: 2-s2.0-85174635637
OpenAlex: W4386891749
Цитирование в БД:
БД Цитирований
OpenAlex 1
Scopus 1
Альметрики: