Solving Maximin Location Problems on Networks with Different Metrics and Restrictions Научная публикация
Конференция |
22nd International conference "Mathematical Optimization Theory and Operations Research" 02-08 июл. 2023 , Екатеринбург |
||
---|---|---|---|
Сборник | Mathematical Optimization Theory and Operations Research: Recent Trends Сборник, Springer. 2023. 406 c. |
||
Журнал |
Communications in Computer and Information Science
ISSN: 1865-0929 |
||
Вых. Данные | Год: 2023, Том: 1881, Страницы: 188-200 Страниц : 13 DOI: 10.1007/978-3-031-43257-6_15 | ||
Ключевые слова | Euclidean metric, Maxmin criterion, Obnoxious facility, Shortest paths, Voronoi diagram. | ||
Авторы |
|
||
Организации |
|
Информация о финансировании (1)
1 | Омский филиал ФГБУН «Институт математики им. С.Л. Соболева СО РАН». | FWNF-2022-0020 |
Реферат:
Several optimal location problems of an obnoxious facility on a network of roads connecting settlements are considered. It is necessary to find such location of the facility so that a minimum distance to a nearest settlement is as large as possible taking into account the resident population. Such facility can be, for example, a nuclear power plant, a waste recycling plant. An overview of various formulations, the properties of the problems and algorithms for solving are given. The main focus is on the problem taking into account a restriction on transportation costs for servicing the settlements by the facility. The cost of servicing the settlements by the facility is determined using the shortest paths in the network. The objective function uses Euclidean metric. Exact algorithm for solving of this problem is proposed.
Библиографическая ссылка:
Zabudsky G.G.
Solving Maximin Location Problems on Networks with Different Metrics and Restrictions
В сборнике Mathematical Optimization Theory and Operations Research: Recent Trends. – Springer., 2023. – Т.1881. – C.188-200. DOI: 10.1007/978-3-031-43257-6_15 Scopus OpenAlex
Solving Maximin Location Problems on Networks with Different Metrics and Restrictions
В сборнике Mathematical Optimization Theory and Operations Research: Recent Trends. – Springer., 2023. – Т.1881. – C.188-200. DOI: 10.1007/978-3-031-43257-6_15 Scopus OpenAlex
Идентификаторы БД:
Scopus: | 2-s2.0-85174614385 |
OpenAlex: | W4386891702 |
Цитирование в БД:
БД | Цитирований |
---|---|
Scopus | 2 |