Sciact
  • EN
  • RU

Dynamics of a system of nonlinear differential equations Full article

Journal Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260
Output data Year: 2007, Volume: 48, Number: 5, Pages: 949-960 Pages count : 12 DOI: 10.1007/s11202-007-0098-x
Tags Nonlinear dynamics, ordinary differential equation, periodic solution, kinetic model
Authors Chumakov G.A. 1
Affiliations
1 Sobolev Institute of Mathematics, Novosibirsk, Russia

Abstract: This is a qualitative analysis of a system of two nonlinear ordinary differential equations which arises in modeling the self-oscillations of the rate of heterogeneous catalytic reaction. The kinetic model under study accounts for the influence of the reaction environment on the catalyst; namely, we consider the reaction rate constant to be an exponential function of the surface concentration of oxygen with an exponent μ. We study the necessary and sufficient conditions for the existence of periodic solutions of differential equations as depending on μ. We formulate some sufficient conditions for all trajectories to converge to a steady state and study global behavior of the stable manifolds of singular saddle points.
Cite: Chumakov G.A.
Dynamics of a system of nonlinear differential equations
Siberian Mathematical Journal. 2007. V.48. N5. P.949-960. DOI: 10.1007/s11202-007-0098-x WOS Scopus РИНЦ OpenAlex
Original: Чумаков Г.А.
Динамика нелинейной системы дифференциальных уравнений
Сибирский математический журнал. 2007. Т.48. №5. С.1180-1195.
Dates:
Submitted: Apr 19, 2006
Identifiers:
Web of science: WOS:000250598700021
Scopus: 2-s2.0-35148825407
Elibrary: 13542103
OpenAlex: W2326205658
Citing:
DB Citing
OpenAlex 3
Scopus 3
Web of science 2
Elibrary 2
Altmetrics: