Parallel Clustering Algorithm for the k-medoids Problem in High-dimensional Space for Large-scale Datasets Научная публикация
Конференция |
Optimization Problems of Complex Systems : International Asian School-Seminar 14-22 авг. 2023 , Новосибирск |
||||||
---|---|---|---|---|---|---|---|
Сборник | 2023 19th International Asian School-Seminar on Optimization Problems of Complex Systems (OPCS) Сборник, IEEE. 2023. 6 c. ISBN 9798350331134. |
||||||
Вых. Данные | Год: 2023, Страницы: 119-124 Страниц : 6 DOI: 10.1109/opcs59592.2023.10275752 | ||||||
Ключевые слова | k-medoids, clustering, facility location, Lagrangian relaxation, machine learning, p-median | ||||||
Авторы |
|
||||||
Организации |
|
Информация о финансировании (1)
1 | Институт математики им. С.Л. Соболева СО РАН | FWNF-2022-0019 |
Реферат:
We present a robust, parallel primal-dual heuristic algorithm for the k-medoids clustering problem, a widely utilized method in data mining and machine learning. Our approach surpasses current algorithms by effectively addressing their limitations, such as time-consuming distance matrix calculations, inefficient nearest-neighbor searches, and difficulties in handling large-scale datasets. To overcome these challenges, we employ an efficient parallel implementation, combined with a pioneering subgradient search algorithm and a parallel column generation method. We evaluate our algorithm on the BIRCH and Stanford Dog datasets and demonstrate its superiority over existing kmedoids clustering algorithms in terms of solution quality and run time. Additionally, we introduce a novel vectorization technique that enables our algorithm to handle various types of data, such as images, text, and point data. Overall, our work contributes to the field of data mining and machine learning by providing an efficient and effective solution for the k-medoids clustering problem. The proposed algorithm offers improved performance, scalability, and versatility, making it a valuable tool for a wide range of applications.
Библиографическая ссылка:
Vandanov S.
, Plyasunov A.V.
, Ushakov A.V.
Parallel Clustering Algorithm for the k-medoids Problem in High-dimensional Space for Large-scale Datasets
В сборнике 2023 19th International Asian School-Seminar on Optimization Problems of Complex Systems (OPCS). – IEEE., 2023. – C.119-124. – ISBN 9798350331134. DOI: 10.1109/opcs59592.2023.10275752 Scopus OpenAlex
Parallel Clustering Algorithm for the k-medoids Problem in High-dimensional Space for Large-scale Datasets
В сборнике 2023 19th International Asian School-Seminar on Optimization Problems of Complex Systems (OPCS). – IEEE., 2023. – C.119-124. – ISBN 9798350331134. DOI: 10.1109/opcs59592.2023.10275752 Scopus OpenAlex
Даты:
Опубликована в печати: | 13 окт. 2023 г. |
Опубликована online: | 13 окт. 2023 г. |
Идентификаторы БД:
Scopus: | 2-s2.0-85175470838 |
OpenAlex: | W4387620806 |