Sciact
  • EN
  • RU

On Sufficient Conditions for the Consistency of Local Linear Kernel Estimators Full article

Journal Mathematical Notes
ISSN: 0001-4346 , E-ISSN: 1573-8876
Output data Year: 2023, Volume: 114, Number: 3-4, Pages: 308-321 Pages count : 14 DOI: 10.1134/s0001434623090043
Tags nonparametric regression, local linear estimator, uniform consistency, fixed design, random design, highly dependent design elements
Authors Linke Yu.Yu. 1
Affiliations
1 Sobolev Institute of Mathematics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0015

Abstract: The consistency of classical local linear kernel estimators in nonparametric regression is proved under constraints on design elements (regressors) weaker than those known earlier. The obtained conditions are universal with respect to the stochastic nature of design, which may be both fixed regular and random and is not required to consist of independent or weakly dependent random variables. Sufficient conditions for pointwise and uniform consistency of classical local linear estimators are stated in terms of the asymptotic behavior of the number of design elements in certain neighborhoods of points in the domain of the regression function.
Cite: Linke Y.Y.
On Sufficient Conditions for the Consistency of Local Linear Kernel Estimators
Mathematical Notes. 2023. V.114. N3-4. P.308-321. DOI: 10.1134/s0001434623090043 WOS Scopus РИНЦ OpenAlex
Original: Линке Ю.Ю.
О достаточных условиях состоятельности локально-линейных ядерных оценок
Математические заметки. 2023. Т.114. №3. С.353-369. DOI: 10.4213/mzm13906 РИНЦ OpenAlex
Dates:
Submitted: Jan 29, 2023
Accepted: Mar 15, 2023
Published print: Oct 24, 2023
Published online: Oct 24, 2023
Identifiers:
Web of science: WOS:001089580100004
Scopus: 2-s2.0-85174583020
Elibrary: 63812436
OpenAlex: W4387902273
Citing:
DB Citing
OpenAlex 2
Scopus 3
Web of science 2
Elibrary 1
Altmetrics: