Sciact
  • EN
  • RU

Spectral, Scattering and Dynamics: Gelfand–Levitan–Marchenko–Krein Equations Научная публикация

Журнал Mathematics
, E-ISSN: 2227-7390
Вых. Данные Год: 2023, Том: 11, Номер: 21, Номер статьи : 4458, Страниц : 31 DOI: 10.3390/math11214458
Ключевые слова Gelfand–Levitan–Krein–Marchenko equation; inverse coefficient problem; inverse scattering problem
Авторы Kabanikhin S.I. 1,2,3 , Shishlenin Maxim A. 1,2,3 , Novikov Nikita S. 1,2,3 , Prokhoshin Nikita 3
Организации
1 Department of Mathematics and Mechanics, Novosibirsk State University, Pirogova St., 2, 630090 Novosibirsk, Russia
2 Institute of Computational Mathematics and Mathematical Geophysics SB RAS, Prospect Akademika Lavrentjeva, 6, 630090 Novosibirsk, Russia
3 Sobolev Institute of Mathematics SB RAS, Akad. Koptyug Avenue, 4, 630090 Novosibirsk, Russia

Информация о финансировании (1)

1 Министерство науки и высшего образования РФ
Математический центр в Академгородке
075-15-2019-1613, 075-15-2022-281

Реферат: In this paper, we consider the Gelfand–Levitan–Marchenko–Krein approach. It is used for solving a variety of inverse problems, like inverse scattering or inverse problems for wave-type equations in both spectral and dynamic formulations. The approach is based on a reduction of the problem to the set of integral equations. While it is used in a wide range of applications, one of the most famous parts of the approach is given via the inverse scattering method, which utilizes solving the inverse problem for integrating the nonlinear Schrodinger equation. In this work, we present a short historical review that reflects the development of the approach, provide the variations of the method for 1D and 2D problems and consider some aspects of numerical solutions of the corresponding integral equations.
Библиографическая ссылка: Kabanikhin S.I. , Shishlenin M.A. , Novikov N.S. , Prokhoshin N.
Spectral, Scattering and Dynamics: Gelfand–Levitan–Marchenko–Krein Equations
Mathematics. 2023. V.11. N21. 4458 :1-31. DOI: 10.3390/math11214458 WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: 25 июн. 2023 г.
Принята к публикации: 16 окт. 2023 г.
Опубликована в печати: 27 окт. 2023 г.
Опубликована online: 27 окт. 2023 г.
Идентификаторы БД:
Web of science: WOS:001100201200001
Scopus: 2-s2.0-85176336017
РИНЦ: 63906171
OpenAlex: W4387971124
Цитирование в БД:
БД Цитирований
OpenAlex 2
Scopus 2
Web of science 2
Альметрики: