Sciact
  • EN
  • RU

A Radon type transform related to the Euler equations for ideal fluid Full article

Journal Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304
Output data Year: 2023, Volume: 20, Number: 2, Pages: 880-912 Pages count : 33 DOI: 10.33048/semi.2023.20.054
Tags Euler equations, Nadirashvili Vladuts transform, tensor tomography
Authors Sharafutdinov V.A. 1
Affiliations
1 Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0006

Abstract: We study the Nadirashvili Vladuts transform N that integrates second rank tensor elds f on Rn over hyperplanes. More precisely, for a hyperplane P and vector η parallel to P, Nf(P,η) is the integral of the function fij(x)ξiηj over P, where ξ is the unit normal vector to P. We prove that, given a vector eld v, the tensor eld f = v ⊗v belongs to the kernel of N if and only if there exists a function p such that (v,p) is a solution to the Euler equations. Then we study the Nadirashvili Vladuts potential w(x,ξ) determined by a solution to the Euler equations. The function w solves some 4th order PDE. We describe all solutions to the latter equation.
Cite: Sharafutdinov V.A.
A Radon type transform related to the Euler equations for ideal fluid
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2023. Т.20. №2. С.880-912. DOI: 10.33048/semi.2023.20.054 WOS Scopus РИНЦ
Dates:
Submitted: May 27, 2023
Published print: Oct 26, 2023
Published online: Oct 26, 2023
Identifiers:
Web of science: WOS:001095866000005
Scopus: 2-s2.0-85176399946
Elibrary: 82134641
Citing: Пока нет цитирований
Altmetrics: