On the variational Prony problem when data contains disturbances lying on a given linear manifold Тезисы доклада
Конференция |
Russian-Chinese Conference "Differential and Difference Equations" 02-06 нояб. 2023 , Новосибирск |
||||
---|---|---|---|---|---|
Сборник | Russian-Chinese Conference "Differential and Difference Equations". Book of Abstracts Сборник, Novosibirsk State University. Novosibirsk.2023. 176 c. ISBN 978-5-4437-1554-4. РИНЦ |
||||
Вых. Данные | Год: 2023, Страницы: 91-92 Страниц : 2 | ||||
Авторы |
|
||||
Организации |
|
Информация о финансировании (1)
1 | Институт математики им. С.Л. Соболева СО РАН | FWNF-2022-0008 |
Реферат:
We study the variational Prony problem of a linear difference equation coefficients identification when data contains disturbances lying on a given linear manifold. The projectivity and the consistency properties of the target function are proven, and the numeric algorithm for finding global minimum based on inverse iterations is proposed. Formulas for optimal filtering of disturbances and additive noise are given. Numeric results are presented.
Библиографическая ссылка:
Lomov A.A.
On the variational Prony problem when data contains disturbances lying on a given linear manifold
В сборнике Russian-Chinese Conference "Differential and Difference Equations". Book of Abstracts. – Novosibirsk State University., 2023. – C.91-92. – ISBN 978-5-4437-1554-4.
On the variational Prony problem when data contains disturbances lying on a given linear manifold
В сборнике Russian-Chinese Conference "Differential and Difference Equations". Book of Abstracts. – Novosibirsk State University., 2023. – C.91-92. – ISBN 978-5-4437-1554-4.
Идентификаторы БД:
Нет идентификаторов
Цитирование в БД:
Пока нет цитирований