Sciact
  • EN
  • RU

One Segregation Problem for the Sum of Two Quasiperiodic Sequences Научная публикация

Конференция XIV International Conference Optimization and Applications
18-22 сент. 2023 , Петровац, Черногория
Сборник Optimization and Applications : 14th International Conference, OPTIMA 2023, Petrovac, Montenegro, September 18–22, 2023, Revised Selected Papers
Сборник, Springer. 2023. 390 c. ISBN 9783031478598.
Журнал Lecture Notes in Computer Science
ISSN: 0302-9743 , E-ISSN: 1611-3349
Вых. Данные Год: 2023, Том: 14395, Страницы: 145-158 Страниц : 14 DOI: 10.1007/978-3-031-47859-8_11
Ключевые слова Discrete optimisation problem · Quasiperiodic sequence · Detection · Segregation · Polynomial-time solvability · One-microphone signal separation
Авторы Mikhailova Liudmila 1
Организации
1 Sobolev Institute of Mathematics, Novosibirsk, Russia

Информация о финансировании (1)

1 Институт математики им. С.Л. Соболева СО РАН FWNF-2022-0015

Реферат: The subject of the study is a noise-proof segregation problem for the sequence being the sum of two independent quasiperiodic sequences. The problem is stated for the case when every quasiperiodic sequence is formed from the known number of identical given subsequences-fragments. A posteriori approach to this problem leads to solving an unexplored discrete optimization problem. A polynomial-time algorithm that guarantees the optimal solution to this optimization problem is proposed. Additionally, there are some examples of numerical simulation for illustration.
Библиографическая ссылка: Mikhailova L.
One Segregation Problem for the Sum of Two Quasiperiodic Sequences
В сборнике Optimization and Applications : 14th International Conference, OPTIMA 2023, Petrovac, Montenegro, September 18–22, 2023, Revised Selected Papers. – Springer., 2023. – C.145-158. – ISBN 9783031478598. DOI: 10.1007/978-3-031-47859-8_11 Scopus OpenAlex
Даты:
Опубликована в печати: 10 нояб. 2023 г.
Опубликована online: 10 нояб. 2023 г.
Идентификаторы БД:
Scopus: 2-s2.0-85177161412
OpenAlex: W4388523067
Цитирование в БД:
БД Цитирований
OpenAlex 1
Альметрики: