Sciact
  • EN
  • RU

On Cluster Editing Problem with Clusters of Small Sizes Научная публикация

Конференция XIV International Conference Optimization and Applications
18-22 сент. 2023 , Петровац, Черногория
Сборник Optimization and Applications : 14th International Conference, OPTIMA 2023, Petrovac, Montenegro, September 18–22, 2023, Revised Selected Papers
Сборник, Springer. 2023. 390 c. ISBN 9783031478598.
Журнал Lecture Notes in Computer Science
ISSN: 0302-9743 , E-ISSN: 1611-3349
Вых. Данные Год: 2023, Том: 14395, Страницы: 316-328 Страниц : 13 DOI: 10.1007/978-3-031-47859-8_23
Ключевые слова Cluster editing · Approximation algorithm · Performance guarantee
Авторы Kononov Alexander 1 , Il’ev Victor 2,3
Организации
1 Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia
2 Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia
3 Dostoevsky Omsk State University, Omsk, Russia

Информация о финансировании (2)

1 Институт математики им. С.Л. Соболева СО РАН FWNF-2022-0019
2 Омский филиал ФГБУН «Институт математики им. С.Л. Соболева СО РАН». FWNF-2022-0020

Реферат: In the cluster editing problem, one has to partition the set of vertices of a graph into disjoint subsets (called clusters) minimizing the number of edges between clusters and the number of missing edges within clusters. We consider a version of the problem in which cluster sizes are bounded from above by a positive integer s. This problem is NP-hard for any fixed s ⩾ 3. We propose polynomial-time approximation algorithms for this version of the problem. Their performance guarantees are equal to 5/3 and 5/2 for the cases s =3 and s =4, respectively. We also show that the cluster editing problem is APX-complete for the case s =3even if the maximum degree of the graphs is bounded by 4.
Библиографическая ссылка: Kononov A. , Il’ev V.
On Cluster Editing Problem with Clusters of Small Sizes
В сборнике Optimization and Applications : 14th International Conference, OPTIMA 2023, Petrovac, Montenegro, September 18–22, 2023, Revised Selected Papers. – Springer., 2023. – C.316-328. – ISBN 9783031478598. DOI: 10.1007/978-3-031-47859-8_23 Scopus OpenAlex
Даты:
Опубликована в печати: 10 нояб. 2023 г.
Опубликована online: 10 нояб. 2023 г.
Идентификаторы БД:
Scopus: 2-s2.0-85177175477
OpenAlex: W4388522890
Цитирование в БД:
БД Цитирований
OpenAlex 3
Scopus 2
Альметрики: