Sciact
  • EN
  • RU

Analogues of Korn’s Inequality on Heisenberg Groups Full article

Journal Doklady Mathematics
ISSN: 1064-5624 , E-ISSN: 1531-8362
Output data Year: 2019, Volume: 99, Pages: 181–184 Pages count : DOI: 10.1134/S1064562419020248
Authors Isangulova Darʹya Vasilʹevna
Affiliations
1 Novosibirsk State University

Abstract: Two analogues of Korn’s inequality on Heisenberg groups are constructed. First, the norm of the horizontal differential is estimated in terms of its symmetric part. Second, Korn’s inequality is treated as a coercive estimate for a differential operator whose kernel coincides with the Lie algebra of the isometry group. For this purpose, we construct a differential operator whose kernel coincides with the Lie algebra of the isometry group on Heisenberg groups and prove a coercive estimate for this operator. Additionally, a coercive estimate is proved for a differential operator whose kernel coincides with the Lie algebra of the group of conformal mappings on Heisenberg groups.
Cite: Isangulova D.V.
Analogues of Korn’s Inequality on Heisenberg Groups
Doklady Mathematics. 2019. V.99. P.181–184. DOI: 10.1134/S1064562419020248 WOS Scopus OpenAlex
Original: Исангулова Д.В.
Аналоги неравенства Корна на группах Гейзенберга
Доклады академии наук. 2019. Т.485. №4. С.405-409. DOI: 10.31857/s0869-56524854405-409 РИНЦ OpenAlex
Dates:
Submitted: Nov 27, 2018
Published print: Jun 19, 2019
Identifiers:
Web of science: WOS:000472169400018
Scopus: 2-s2.0-85067595205
OpenAlex: W2951116434
Citing:
DB Citing
OpenAlex 4
Scopus 3
Web of science 3
Altmetrics: