On the existence of radially symmetric solutions for the p-Laplace equation with strong nonlinearities Full article
Journal |
Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260 |
||
---|---|---|---|
Output data | Year: 2023, Volume: 64, Number: 6, Pages: 1332-1345 Pages count : 12 DOI: 10.1134/S0037446623060162 | ||
Tags | p-Laplace equation, Bernstein–Nagumo condition, a priori estimates, radially symmetric solutions | ||
Authors |
|
||
Affiliations |
|
Funding (1)
1 | Sobolev Institute of Mathematics | FWNF-2022-0008 |
Abstract:
The Dirichlet problem is studied for an equation with a p-Laplacian in the presence of gradient terms that do not satisfy the Bernstein–Nagumo condition. A solution is sought in the class of radially symmetric functions. The absence of additional conditions on the sign of the derivative in the equation obtained after a standard change of variables leads to the search for weak Sobolev solutions. As a result, a class of gradient nonlinearities that do not satisfy the Bernstein–Nagumo condition was determined, for which the existence of a weak radially symmetric solution with a Hölder continuous derivative was proven.
Cite:
Tersenov A.S.
On the existence of radially symmetric solutions for the p-Laplace equation with strong nonlinearities
Siberian Mathematical Journal. 2023. V.64. N6. P.1332-1345. DOI: 10.1134/S0037446623060162 WOS Scopus РИНЦ OpenAlex
On the existence of radially symmetric solutions for the p-Laplace equation with strong nonlinearities
Siberian Mathematical Journal. 2023. V.64. N6. P.1332-1345. DOI: 10.1134/S0037446623060162 WOS Scopus РИНЦ OpenAlex
Original:
Терсенов А.С.
О существовании радиально симметричных решений для эллиптического уравнения с p-лапласианом и с сильными градиентными
Сибирский математический журнал. 2023. Т.64. №6. С.1332-1345. DOI: 10.33048/smzh.2023.64.616 РИНЦ
О существовании радиально симметричных решений для эллиптического уравнения с p-лапласианом и с сильными градиентными
Сибирский математический журнал. 2023. Т.64. №6. С.1332-1345. DOI: 10.33048/smzh.2023.64.616 РИНЦ
Dates:
Submitted: | May 4, 2023 |
Accepted: | Sep 25, 2023 |
Published print: | Nov 24, 2023 |
Published online: | Nov 24, 2023 |
Identifiers:
Web of science: | WOS:001120902100019 |
Scopus: | 2-s2.0-85178923347 |
Elibrary: | 65382439 |
OpenAlex: | W4389379435 |