Sciact
  • EN
  • RU

On the existence of radially symmetric solutions for the p-Laplace equation with strong nonlinearities Full article

Journal Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260
Output data Year: 2023, Volume: 64, Number: 6, Pages: 1332-1345 Pages count : 12 DOI: 10.1134/S0037446623060162
Tags p-Laplace equation, Bernstein–Nagumo condition, a priori estimates, radially symmetric solutions
Authors Tersenov Ar.S. 1
Affiliations
1 Sobolev Institute of Mathematics

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0008

Abstract: The Dirichlet problem is studied for an equation with a p-Laplacian in the presence of gradient terms that do not satisfy the Bernstein–Nagumo condition. A solution is sought in the class of radially symmetric functions. The absence of additional conditions on the sign of the derivative in the equation obtained after a standard change of variables leads to the search for weak Sobolev solutions. As a result, a class of gradient nonlinearities that do not satisfy the Bernstein–Nagumo condition was determined, for which the existence of a weak radially symmetric solution with a Hölder continuous derivative was proven.
Cite: Tersenov A.S.
On the existence of radially symmetric solutions for the p-Laplace equation with strong nonlinearities
Siberian Mathematical Journal. 2023. V.64. N6. P.1332-1345. DOI: 10.1134/S0037446623060162 WOS Scopus РИНЦ OpenAlex
Original: Терсенов А.С.
О существовании радиально симметричных решений для эллиптического уравнения с p-лапласианом и с сильными градиентными
Сибирский математический журнал. 2023. Т.64. №6. С.1332-1345. DOI: 10.33048/smzh.2023.64.616 РИНЦ
Dates:
Submitted: May 4, 2023
Accepted: Sep 25, 2023
Published print: Nov 24, 2023
Published online: Nov 24, 2023
Identifiers:
Web of science: WOS:001120902100019
Scopus: 2-s2.0-85178923347
Elibrary: 65382439
OpenAlex: W4389379435
Citing:
DB Citing
OpenAlex 2
Scopus 2
Elibrary 2
Altmetrics: